

Accessing λ at the LHC through HH production via VBS

Claudia García-García

Instituto de Física Teórica, Universidad Autónoma de Madrid/CSIC

claudia.garcia@uam.es

October 8th, 2018

VBSCan WG1 meeting

Based on [arXiv:1807.09736]

E. Arganda, CGG, M.J. Herrero

Introduction to the topic

Aim

- Measure accurately the Higgs self-coupling λ
- Understand the BEH mechanism
- Check BSM alternatives of \(\lambda\)

Current status and sensitivity at the LHC

Studies focus on gluon gluon fusion (dominant) HH production

See references [11-39] for theoretical studies and [40-46] for experimental searches in [arXiv:1807.09736]

- lacktriangle Different ggF channels considered (th. and exp.): $b\bar{b}b\bar{b}$, $b\bar{b}\gamma\gamma$, $b\bar{b}\tau\bar{\tau}$...
- igoplus Current sensitivity: exp. global analysis constrains $\lambda \in [-5.0, 12.1] \ \lambda_{SM}$ at 95% C.L.

[ATLAS-CONF-2018-043]

Future prospects at linear colliders

 \bigcirc e+e- linear colliders (ILC, CLIC) will allow for most precise λ_{SM} measurements

[Abramowicz et al, Eur. Phys. J. C77 (2017) 475]

O Still far (and/or unknown) in the future!!

$$\Delta \lambda / \lambda = 40\%$$
 at $\sqrt{s} = 1.4 \text{ TeV}$, $\Delta \lambda / \lambda = 22\%$ at $\sqrt{s} = 3 \text{ TeV}$.

Motivation

Is there an alternative to gluon gluon fusion to test λ ?

Until today studies focus on gluon gluon fusion (ggF)

- High rates
- 1-loop, top mass involved, big uncertainties

- Our proposal: focus on Vector Boson Scattering potential (VBS)
 - Tree level, no top physics involved, small uncertainties, heart of scalar interactions very characteristic kinematics

WARNING! All our LHC numerical results are provided at the parton level

Introduction - More on why VBS at the LHC

ggF: $gg \rightarrow HH$

$$\sigma_{\rm ggF}(14 {\rm ~TeV}, \kappa = \lambda/\lambda_{\rm SM} = 1) \sim 32 {\rm ~fb}$$

- 1-loop + Top mass uncertainties
- Big scale choice uncertainties
- Sizable NLO corrections
- Less specific kinematics
- Only sensitive to HHH coupling

VBS: $q_1q_2 \rightarrow HHq_3q_4$

$$\sigma_{\text{VBS}}(14 \text{ TeV}, \kappa = \lambda/\lambda_{\text{SM}} = 1) \sim 2 \text{ fb}$$

- Tree level + No top physics involved
- Small scale choice uncertainties
- Small NLO corrections
- Very characteristic kinematics
- Probes EWSB sector directly through V_LV_L→HH sub-scattering

Introduction - More on why VBS at the LHC

ggF:
$$gg \rightarrow HH$$

$$\sigma_{\rm ggF}(14 {\rm ~TeV}, \kappa = \lambda/\lambda_{\rm SM} = 1) \sim 32 {\rm ~fb}$$

- 1-loop + Top mass uncertainties
- Big scale choice uncertainties
- Sizable NLO corrections
- Less specific kinematics
- Only sensitive to HHH coupling

ggF:
$$gg \rightarrow HHjj$$
?

$$\sigma_{\rm ggF}^{\rm HHjj}(14~{
m TeV},\kappa=\lambda/\lambda_{
m SM}=1)\sim 5.5~{
m fb}$$

- ullet Contributes to our signal: "same" final state & sensitive to λ
- Larger above-commented uncertainties than VBS
- VBS selection cuts reduce cross section below pure VBS one
- More optimized VBS cuts suppose bigger reduction
- Not taken into account in the present work

VBS: $q_1q_2 \rightarrow HHq_3q_4$

$$\sigma_{\text{VBS}}(14 \text{ TeV}, \kappa = \lambda/\lambda_{\text{SM}} = 1) \sim 2 \text{ fb}$$

- Tree level + No top physics involved
- Small scale choice uncertainties
- Small NLO corrections
- Very characteristic kinematics
- Probes EWSB sector directly through V_LV_L→HH sub-scattering

[Dolan et al, Phys. Rev. Lett. 112 (2014) 101802]

[Dolan et al, Eur. Phys. J. C75 (2015) 387]

Learning from SM subprocess VV→HH

Diagrams that contribute:

Reminder of main facts in the SM

- λ present only in s-channel
- Cross section dominated by V_LV_L → HH
- λ contribution subleading in SM
- Main c+t+u cancellations lead to σ flatness at high √s
- Negative interference between
 λ diagram and the rest only relevant near HH threshold

Learning from SM subprocess VV→HH

Diagrams that contribute:

Reminder of main facts in the SM

- λ present only in s-channel
- \circ Cross section dominated by $V_LV_L \rightarrow HH$
- λ contribution subleading in SM
- Main c+t+u cancellations lead to σ flatness at high √s
- Negative interference between
 λ diagram and the rest only relevant
 near HH threshold

BSM distortions varying $\kappa = \lambda l \lambda_{SM}$

- We study $\lambda \in [-10,10] \lambda_{SM}$
- Energy and angular behavior change when varying λ

- \bigcirc $\lambda \neq \lambda_{SM}$ leads to sizable (exp. observable) deviations from the SM
- Largest deviations near HH production threshold

Moving on to the LHC: pp → HHjj

Signal: prediction of $q_1q_2 \rightarrow HHq_3q_4$ events for given λ VBS characterization of our signal

Extra jets identify VBS configurations among all contributing diagrams

Two opposite-side forward/backward jets with large pseudorapidity gap required

$$|\Delta\eta_{jj}| \equiv |\eta_{j_1} - \eta_{j_2}|$$

with large invariant masses

$$M_{jj}$$

Defining VBS selection cuts

Spoiler: more on this later

$$|\Delta \eta_{jj}| > 4$$

$$M_{ii} > 500 \text{ GeV}$$

How VBS-dominated is our signal?

VERY!!! 55-75% of q₁q₂→ HHq₃q₄ events occur through VBS

Varying κ at the LHC in pp → HHjj

- pp → HHjj VBS-dominated direct translation form subprocess results
- Visible deviations respect to the SM!!!

- Different sensitivity to $\lambda > 0$ and to $\lambda < 0$ remains
- Largest sensitivity still near HH production threshold

Our signal after Higgs decays

- HH production observed through Higgs decay products
- lacktriangle Two decays considered: $H \rightarrow b\bar{b}$ and $H \rightarrow \gamma\gamma$

- Highest rates due to large BR(H → bb̄) ~ 60 %
- Large backgrounds

$$pp \rightarrow HHjj \rightarrow b\bar{b}\gamma\gamma jj (q_1q_2 \rightarrow b\bar{b}\gamma\gamma q_3q_4)$$

- Much cleaner channel. Small and controlable backgrounds
- Lower statistics due to small BR(H $\rightarrow \gamma\gamma$) ~ 0.2 %

Our signal after Higgs decays

- HH production observed through Higgs decay products
- Two decays considered: H → b̄b and H → γγ

Let us explore this one first!!

- Highest rates due to large BR(H → bb̄) ~ 60 %
- Large backgrounds

$$pp \rightarrow HHjj \rightarrow b\bar{b}\gamma\gamma jj (q_1q_2 \rightarrow b\bar{b}\gamma\gamma q_3q_4)$$

- Much cleaner channel. Small and controlable backgrounds
- Lower statistics due to small BR(H $\rightarrow \gamma\gamma$) ~ 0.2 %

Identifying backgrounds in pp → bbbbjj

multijet QCD pp→ bbbbjj

Estimated with MG5 Checked with AlpGen

- Dominant background by many orders of magnitude
- Additional selection cuts apart from VBS required?

tt → bW+bW-→ bbbbjj

- O CKM suppressed
- Radically different kinematics respect to VBS
- O Under control

$$\mathcal{O}(lpha^2 \cdot lpha_S) \cdot |V_{qb}|^2$$

pp → ZZjj → bbbbjj & pp → ZHjj → bbbbjj

- Take place in part through VBS configurations
- Additional selection cuts apart from VBS required?

Study of VBS cuts in pp → bbbbjj

- We analyze the fraction of events that satisfy different sets of VBS cuts
- Signal dominated by VBS topologies
- QCD background reduced in 1-1.5 orders of magnitude ...

<i>√</i> –	$\sigma(pp \rightarrow$	$b\bar{b}b\bar{b}jj) _{\mathrm{VBS}}$
$\mathcal{A}_{\mathrm{VBS}} \equiv$	$\sigma(pp)$	$\rightarrow b\bar{b}b\bar{b}ii$)

Set of VBS cuts	$\mathcal{A}_{\mathrm{VBS}}^{\mathrm{QCD}}$	$\mathcal{A}_{\mathrm{VBS}}^{\mathrm{Signal};\kappa=1}$
$ \Delta \eta_{jj} > 4, \ M_{jj} > 500 \text{ GeV}$	0.086	0.631
$ \Delta \eta_{jj} > 4$, $M_{jj} > 600 \text{ GeV}$	0.066	0.597
$ \Delta \eta_{jj} > 4, \ M_{jj} > 700 \text{ GeV}$	0.054	0.558
$ \Delta \eta_{jj} > 3, \ M_{jj} > 500 \text{ GeV}$	0.098	0.669
$ \Delta \eta_{jj} > 3, \ M_{jj} > 600 \text{ GeV}$	0.071	0.626
$ \Delta \eta_{jj} > 3, \ M_{jj} > 700 \text{ GeV}$	0.057	0.580

Different sets give similar results

We stick to:

 $|\Delta \eta_{jj}| > 4$ $M_{ii} > 500 \text{ GeV}$

Study of VBS cuts in pp → bbbbjj

- We analyze the fraction of events that satisfy different sets of VBS cuts
- Signal dominated by VBS topologies
- QCD background reduced in 1-1.5 orders of magnitude

<i>✓</i> =	$\sigma(pp \rightarrow$	$ b\bar{b}b\bar{b}jj\rangle _{\mathrm{VBS}}$
$\mathcal{A}_{\mathrm{VBS}} \equiv$	$\sigma(pp)$	$\rightarrow b\bar{b}b\bar{b}jj)$

Set of VBS cuts	$\mathcal{A}_{ ext{VBS}}^{ ext{QCD}}$	$\mathcal{A}_{\mathrm{VBS}}^{\mathrm{Signal};\kappa=1}$
$ \Delta \eta_{jj} > 4$, $M_{jj} > 500 \text{ GeV}$	0.086	0.631
$ \Delta \eta_{jj} > 4$, $M_{jj} > 600 \text{ GeV}$	0.066	0.597
$ \Delta \eta_{jj} > 4, \ M_{jj} > 700 \text{ GeV}$	0.054	0.558
$ \Delta \eta_{jj} > 3, \ M_{jj} > 500 \text{ GeV}$	0.098	0.669
$ \Delta \eta_{jj} > 3, \ M_{jj} > 600 \text{ GeV}$	0.071	0.626
$ \Delta \eta_{jj} > 3$, $M_{jj} > 700 \text{ GeV}$	0.057	0.580

Different sets give similar results

We stick to:

 $|\Delta \eta_{jj}| > 4$ $M_{jj} > 500 \; \mathrm{GeV}$

Basic detection cuts: $p_{T_{i,b}} > 20 \text{ GeV}$; $|\eta_j| < 5$; $|\eta_b| < 2.5$; $\Delta R_{jj,jb} > 0.4$; $\Delta R_{bb} > 0.2$

Signal and QCD background kinematics

Signal & QCD bkg populate different kinematical regions

New cuts apart from VBS?

Profit from Higgs decays info

b-quarks paired as HH candidates: pairing minimizing | Mbb1 - Mbb2 |

HH candidate identification

b-quark pairs identified as HH decays

We follow recent cuts proposed by ATLAS [arXiv: 1804.06174] and CMS [CMS-PAS-HIG-16-026]

$$p_{T_b} > 35 \text{ GeV}$$

$$\hat{\Delta}R_{bb} \equiv \left\{ \begin{array}{l} 0.2 < \Delta R_{bb^l} < \frac{653}{M_{4b}\,\mathrm{GeV}} + 0.475 \,;\; 0.2 < \Delta R_{bb^s} < \frac{875}{M_{4b}\,\mathrm{GeV}} + 0.35 \,,\, M_{4b} < 1250 \,\,\mathrm{GeV} \\ 0.2 < \Delta R_{bb^l} < 1 \,;\; 0.2 < \Delta R_{bb^s} < 1 \,,\, M_{4b} > 1250 \,\,\mathrm{GeV} \end{array} \right.$$

$$\hat{p}_{T_{bb}} \equiv p_{T_{bb}l} > M_{4b}/2 - 103 \,\text{GeV}; \ p_{T_{bb}s} > M_{4b}/3 - 73 \,\text{GeV}$$

$$\chi_{HH} \equiv \sqrt{\left(\frac{M_{bb^l} - m_H}{0.05 \, m_H}\right)^2 + \left(\frac{M_{bb^s} - m_H}{0.05 \, m_H}\right)^2} < 1$$

HH candidate identification

b-quark pairs identified as HH decays

O HH candidate cuts:

We follow recent cuts proposed by ATLAS [arXiv: 1804.06174] and CMS [CMS-PAS-HIG-16-026]

$$\hat{p}_{T_{bb}} \equiv p_{T_{bb^l}} > M_{4b}/2 - 103 \,\text{GeV}; \ p_{T_{bb^s}} > M_{4b}/3 - 73 \,\text{GeV}$$

$$\chi_{HH} \equiv \sqrt{\left(\frac{M_{bb^l} - m_H}{0.05 \, m_H}\right)^2 + \left(\frac{M_{bb^s} - m_H}{0.05 \, m_H}\right)^2} < 1$$

 $[M_{bb1}, M_{bb2}] \sim [M_H, M_H]$

Efficiency of the selection cuts

Combined HH candidate and VBS cuts

Signal mildly reduced

Cut	$\sigma_{\rm QCD}$ [pb]	$\sigma_{ZHjj,ZZjj}$ [pb]	$\sigma_{\text{Signal};\kappa=1}$ [pb]
Basic detection cuts	602.72	0.028	$5.1 \cdot 10^{-4}$
$p_{T_b} > 35 \text{ GeV}$	98.31	0.01	$3.0 \cdot 10^{-4}$
$\hat{\Delta}R_{bb}$	33.80	$6.3 \cdot 10^{-3}$	$1.1 \cdot 10^{-4}$
$\hat{p}_{T_{bb}}$	29.77	$5.8 \cdot 10^{-3}$	$9.0 \cdot 10^{-5}$
$\chi_{HH} < 1$,	$7.9 \cdot 10^{-2}$	$8.6 \cdot 10^{-6}$	$9.0 \cdot 10^{-5}$
VBS cuts in	$6.8 \cdot 10^{-3}$	$5.5 \cdot 10^{-6}$	$4.1 \cdot 10^{-5}$

Cuts subsequently applied

O Very reduced backgrounds!!!

Efficiency of the selection cuts

Combined HH candidate and VBS cuts

Signal mildly reduced

Cut	$\sigma_{ m QCD}$ [pb]	$\sigma_{ZHjj,ZZjj}$ [pb]	$\sigma_{\text{Signal};\kappa=1}$ [pb]
Basic detection cuts	602.72	0.028	$5.1 \cdot 10^{-4}$
$p_{T_b} > 35 \text{ GeV}$	98.31	0.01	$3.0 \cdot 10^{-4}$
$\hat{\Delta}R_{bb}$	33.80	$6.3 \cdot 10^{-3}$	$1.1 \cdot 10^{-4}$
$\hat{p}_{T_{bb}}$	29.77	$5.8 \cdot 10^{-3}$	$9.0 \cdot 10^{-5}$
$\chi_{HH} < 1$,	$7.9 \cdot 10^{-2}$	$8.6 \cdot 10^{-6}$	$9.0 \cdot 10^{-5}$
VBS cuts in	$6.8 \cdot 10^{-3}$	$5.5 \cdot 10^{-6}$	$4.1 \cdot 10^{-5}$

Cuts subsequently applied

- O Very reduced backgrounds!!!
- Total SM background: multijet QCD + ZZjj + ZHjj events leading to bbbbjj

4b inv. mass distributions of pp → bbbbjj

- **Similar** results as in pp → HHjj varying κ
- Clear deviations respect the background and the λ_{SM} prediction

 \circ Some predictions (κ = -10) even above backgrounds!

Sensitivity to λ in pp \rightarrow bbbbjj

High sensitivity to BSM λ even for the lowest luminosities!!!

$$S_{\text{stat}} = \sqrt{-2\left((N_S + N_B)\log\left(\frac{N_B}{N_S + N_B}\right) + N_S\right)}$$

Statistical significance for different λ values and different luminosities

Luminosity required to observe a λ value at 3σ and 5σ

Accesible values of λ in pp → bbbbjj

Which λ intervals can we probe through VBS?

- We explore different luminosities
- Different sensitivities to λ < 0 and λ > 0 at 3σ (5σ)

L [fb ⁻¹]	50	300	1000	3000
	$\kappa > 5.4 (7.0)$ $\kappa < -2.4 (-3.8)$,	,	` '

- Very broad intervals probed even for low luminosities!
- For L = 50 fb⁻¹ similar results than current 95% C.L. sensitivity: κ ∈ [-5.0,12.1] *
- HL-LHC: able to test small deviations and be sensitive to all λ < 0 values

*WARNING!: Naive results. Hadronization and detector not taken into account

Our signal after Higgs decays

- HH production observed through Higgs decay products
- Two decays considered: $H \rightarrow b\bar{b}$ and $H \rightarrow \gamma\gamma$

- Highest rates due to large BR(H → bb̄) ~ 60 %
- Large backgrounds

Time to explore this one!!

$$pp \rightarrow HHjj \rightarrow b\bar{b}\gamma\gamma jj (q_1q_2 \rightarrow b\bar{b}\gamma\gamma q_3q_4)$$

- Much cleaner channel. Small and controlable backgrounds
- Lower statistics due to small BR(H $\rightarrow \gamma\gamma$) ~ 0.2 %

pp → bbγγjj backgrounds and selection cuts

mixed QCDEW pp→ bbyyjj

- Dominant background but easy to control
- Additional selection cuts apart from VBS required?

pp → ZHjj → bbyyjj

- Take place in part through VBS configurations
- Additional selection cuts apart from VBS required?

Selection cuts

VBS cuts + HH candidate $p_{T_{\gamma l}}/M_{\gamma \gamma} > 1/3; \quad p_{T_{\gamma s}}/M_{\gamma \gamma} > 1/4; \quad \chi_{HH} = \sqrt{\left(\frac{M_{bb} - m_H}{0.05 \, m_H}\right)^2 + \left(\frac{M_{\gamma \gamma} - m_H}{0.05 \, m_H}\right)^2} < 1$

VERY REDUCED BACKGROUNDS!

Basic detection cuts: $p_{T_{j,b}} > 20 \text{ GeV}$; $p_{T_{\gamma}} > 18 \text{ GeV}$; $|\eta_j| < 5$; $|\eta_{b,\gamma}| < 2.5$; $\Delta R_{jj,jb,\gamma\gamma,\gamma b,\gamma j} > 0.4$; $\Delta R_{bb} > 0.2, p_{T_{\gamma l}} > 0.4$

2b2γ inv. mass distributions of pp → bbγγjj

Signal = $q_1q_2 \rightarrow HHq_3q_4 \rightarrow bb\gamma\gamma q_3q_4$ (sensitive to λ) SM Background = mixed QCDEW + ZHjj events leading to $b\bar{b}\gamma\gamma jj$

- Similar results as in pp → HHjj and pp → bbbbjj varying κ with smaller rates
- Again clear deviations respect the background and the λ_{SM} prediction

- Very reduced and steeper backgrounds
- All tested values of λ above background!

Sensitivity in pp → bbyyjj

Modest but interesting channel to probe the H self-coupling

Statistical significance for different λ values and different luminosities

Luminosity required to observe a λ value at 3σ and 5σ

Accesible values of λ in pp \rightarrow bbyyjj

Which λ intervals can we probe through VBS?

- We explore different luminosities
- Different sensitivities to λ < 0 and λ > 0 at 3σ (5σ)

$L [fb^{-1}]$	50	300	1000	3000
	$\kappa > 9.9 (14.2)$	\ /	/	\ /
$\kappa < 0$	$\kappa < -6.7 (-10.0)$	$\kappa < -2.7 (-4.6)$	$\kappa < -1.1 (-2.3)$	$\kappa < -0.2 (-1.0)$

- Very broad intervals probed except for low luminosities (not enough signal events)
- For L \geq 300 fb⁻¹ similar results than current 95% C.L. sensitivity: $\kappa \in$ [-5.0,12.1] *
- HL-LHC: Probe small deviations very efficiently in this channel

*WARNING!: Naive results. Hadronization and detector not taken into account

Conclusions

- Clear motivation: measure the H self-coupling through HH production
- Until now done via ggF VBS has many advantages (although lower rates)
- We perform a devoted study of HH production via VBS at the LHC
- We give predictions for sensitivity in two decay channels after VBS and HH candidate selection
 - pp \rightarrow bbbbjj: large rates but large backgrounds

 High and promising sensitivities already for $L=50~{
 m fb}^{-1}$ HL-LHC could probe small deviations: $\begin{cases} {
 m Up \ to \ \kappa \sim 3 \ for \ \lambda > 0 \ at \ 3\sigma} \\ {
 m All \ studied \ values \ for \ \lambda < 0 \ at \ 3\sigma} \end{cases}$
 - pp \rightarrow bbyyjj: small rates but very controlled backgrounds

 Modest but interesting sensitivities. Need to go to $L \geq 300~{\rm fb}^{-1}$ HL-LHC could probe small deviations very efficiently
- Promising results deserve further study including hadronization and detector!!!

Take home message

VBS very optimal to probe the H self-coupling at the LHC!!!

Vector Boson Fusion

sensitivity

Conclusions

- Clear motivation: measure the H self-coupling through HH production
- Until now done via ggF VBS has many advantages (although lower rates)
- We perform a devoted study of HH production via VBS at the LHC
- We give predictions for sensitivity in two decay channels after VBS and HH candidate selection
 - pp \rightarrow bbbbjj: large rates but large backgrounds

 High and promising sensitivities already for $L=50~{
 m fb}^{-1}$ HL-LHC could probe small deviations: $\begin{cases} {
 m Up \ to \ \kappa \sim 3 \ for \ \lambda > 0 \ at \ 3\sigma} \\ {
 m All \ studied \ values \ for \ \lambda < 0 \ at \ 3\sigma} \end{cases}$
 - pp \rightarrow bbyyjj: small rates but very controlled backgrounds

 Modest but interesting sensitivities. Need to go to $L \geq 300~{\rm fb}^{-1}$ HL-LHC could probe small deviations very efficiently
- Promising results deserve further study including hadronization and detector!!!

Back up slides

Features of sensitivity to λ at different √s

Interplay between diagrams

- \bigcirc $\lambda > 0$: negative interference
- \circ λ < 0: positive interference

Sensitivity to $\lambda > 0$ and to $\lambda < 0$ different!

Better sensitivity for $\lambda < 0$ for same $|\lambda|$

Cancellations and analytical sensitivity to λ depend on energy and λ value

Highest sensitivity outside the interval around minimum

Largest cross section and sensitivity near the HH threshold

Sensitivity at the LHC vs subprocess

Does interference play the same role in pp → HHjj?

- Minimum appears in different place?
 - LHC cross section dominated by region close to HH threshold
 - Applying VBS cuts moves minimum
 - VBS selection improves sensitivity away from minimum

(No) Unitarity violation problems

 Definition of unitarity violation: absolute value of Jth (angular momentum) partial wave of VV → HH becomes 1

$$|a_J| = \left| \frac{1}{64\pi} \int_{-1}^1 d\cos\theta \, A(VV \to HH) P_J(\cos\theta) \right| > 1$$

- We have checked that all our partial waves for $\lambda \in [-10,10] \lambda_{SM}$ are below 0.1
- No unitarity violation in this channel

Other channels such as HH HH might violate unitarity for κ ~7 values at low energies

"Pollution" from ggF HHjj production?

- Initial cross section twice as big as pure VBS
- After [Dolan et al, Eur. Phys. J. C75 (2015) 387] selection cuts based on Δηί ggF amounts to 1/3 of VBS
- They also impose cuts on low M_{HH} masses near threshold where most of VBS signal lies
- More sophisticated VBS cuts, such as our M_{jj}, will improve this rate favoring VBS!!

Comment on tagging efficiencies effects

Results modified taking into account b and γ tagging efficiencies

Current values:

b-tagging eff. ~ 70%

γ-tagging eff. ~ 95%

	Number of events reduction	Significance reduction
bbbbjj	N _{eff} /N ~ 0.25	S _{eff} /S ~ 0.5
bbyyjj	$N_{eff}/N \sim 0.5$	S _{eff} /S ~ 0.7

• Examples of accesible values of λ for L = 3000 fb⁻¹ with and without efficiencies

	κ > 0	κ > 0 (eff)	κ < 0	κ < 0 (eff)
bbbbjj	κ > 3.2 (3.7)	κ > 3.8 (8.7)	κ < 0 (-0.2)	κ < -0.6 (-1.0)
bbyyjj	κ > 3.8 (4.7)	к > 4.7 (5.4)	κ < -0.2 (-1.0)	κ < -0.9 (-2.3)

These efficiencies might improve! Easy way to apply the new ones!