Ineastic Boosted Dark Matter Searches at ICARUS – Gran Sasso

Doojin Kim

Outline

- 1. Physics Motivation
- 2. Signatures and General Strategies
- 3. Phenomenology: Experimental Sensitivities

Physics Motivation

Current Status of DM Searches

No observation of DM signatures via non-gravitational interactions (many searches/interpretations designed/performed under WIMP/minimal dark-sector scenarios) => merely excluding more parameter space in dark matter models

Current Status of DM Searches

No observation of DM signatures via non-gravitational interactions (many searches/interpretations designed/performed under WIMP/minimal dark-sector scenarios) \Rightarrow merely excluding more parameter space in dark matter models

Time to change our approach?!

10²

CMS

COUPP 201

IIIX

M_v [GeV]

 10^{3}

 $(\overline{\chi}\gamma_{\mu}\chi)(\overline{q}\gamma^{\mu}q)$

Conventional Approach

- □ Traditional approaches for DM searches:
 - ✓ Weak-scale mass
 - ✓ Weakly-coupled

✓ Minimal dark sector

- ✓ Elastic scattering
- ✓ Non-relativistic

Conventional vs. Nonconventional Approach

- □ Traditional approaches for DM searches:
 - ✓ Weak scale mass
 - ✓ Weakly-coupled

✓ Minimal dark sector

- ✓ Elastic scattering
- ✓ Non-relativistic

- □ Modified approaches for DM searches:
 - ✓ Other mass scale: e.g., PeV, sub-GeV, MeV, keV, meV, ...
 - Weaker coupling to the SM: e.g., vector portal (dark photon), scalar portal, axion portal, ...
 - "Flavorful" dark sector: e.g., more dark matter species, unstable heavier dark sector states, ...
 - Inelastic scattering (i.e., up-scatter to an "excited" state)
 - ✓ Relativistic

-2-

Conventional vs. Nonconventional Approach

- □ Traditional approaches for DM searches:
 - ✓ Weak scale mass
 - ✓ Weakly-coupled

✓ Minimal dark sector

- ✓ Elastic scattering
- ✓ Non-relativistic

- □ Modified approaches for DM searches:
 - ✓ Other mass scale: e.g., PeV, sub-GeV, MeV, keV, meV, ...
 - Weaker coupling to the SM: e.g.,
 vector portal (dark photon), scalar
 portal, axion portal, ...
 - "Flavorful" dark sector: e.g., more dark matter species, unstable heavier dark sector states, ...
 - Inelastic scattering (i.e., up-scatter to an "excited" state)
 - ✓ Relativistic

DM Search Strategies

DM Search Strategies

-3-

Signatures and General Strategies

- χ_0 : heavier DM
- χ_1 : lighter DM
- γ_1 : boost factor of χ_1
- χ_2 : massive unstable dark-sector state
- *φ*: mediator/portal particle

-4-

(*a*) Elastic scattering (eBDM) [Necib, Moon, Wongjirad, Conrad (2016); Alhazmi, Kong, Mohlabeng, Park (2016); DK, Kong, Park, Shin (2018)]

- χ_0 : heavier DM
- χ_1 : lighter DM
- γ_1 : boost factor of χ_1
- χ_2 : massive unstable dark-sector state
- *φ*: mediator/portal particle

Expected Signatures with a Dark Photon Scenario

- Benchmark model to describe interactions
 between dark-sector and SM-sector particles:
 dark photon (X) model.
- $\Box m_2 > m_1 + 2m_e$
- **Three electron tracks** with two possibilities
 - ✓ "Prompt" *i*BDM: scattering (primary) and decay (secondary) arise at the same point.

Expected Signatures with a Dark Photon Scenario

- Benchmark model to describe interactions
 between dark-sector and SM-sector particles:
 dark photon (*X*) model.
- $\Box m_2 > m_1 + 2m_e$
- **Three electron tracks** with two possibilities
 - ✓ "Prompt" *i*BDM: scattering (primary) and decay (secondary) arise at the same point.

□ Note that tracks will pop up inside the fiducial volume.

□ Straightforwardly applicable to proton recoil (up to form factor, DIS etc.)

Expected Number of v-induced Events

- \Box Atm.- ν may induce multi-track events (which could be backgrounds)
- □ The dominant source
 - $\checkmark \nu_e$ -induced C.C. events

Other subdominant sources

- ✓ N.C. events: smaller cross section
- ✓ v_{τ} -induced: too small flux, hence negligible
- ✓ ν_{μ} -induced C.C.: leaving an energetic (primary) muon (which can be tagged easily)

Expected Number of v-induced Events

\Box ν_e -flux [SK Collaboration, 1502.03916] \otimes ν_e -cross section [Formaggio, Zeller, 1305.7513]

Expected Number of v-induced Events

\neg v_e -flux [SK Collaboration, 1502.03916] \otimes v_e -cross section [Formaggio, Zeller, 1305.7513]

Most DIS events result in messy final states, not mimicking signal events, while a majority of resonance events may create a few mesons in the final state [Formaggio, Zeller, 1305.7513].

- ⇒ 12.2 events/kt/yr are potentially relevant, i.e., 18 events/3-yr for 0.48 kt
- □ (quality) track-based particle identification etc at ICARUS LArTPC detectors can suppress such events significantly. → Zero BG is achievable!

-7-

Phenomenology: Experimental Sensitivities

Reminder for the Signal of Interest

□ Remember that dark photon is a "player" in the benchmark model, allowing us to study phenomenology of dark photon!

Proposed Search Strategy

□ It may be hard for each of three tracks to exceed the threshold energy unless the heavier (cosmological) dark mass is heavy enough (at the price of signal flux).

- \Rightarrow All three visible particles are likely to be collimated (due to a large boost factor of χ_1).
- ⇒ However, such (single-track-like) collective/"fat" objects can overcome the threshold, hence we accept the associated events.
- \Rightarrow dE/dx analysis can allow to distinguish

collimated objects from true single track events,

i.e., three tracks overlaid (signal) vs. two tracks overlaid (signal, cf. "near-stationary" pioninduced photons leave two overlaid tracks, but do not overcome the threshold) vs. electron track (background)

Dark Photon Parameter Space: Invisible X Decay

 \Box Case study 1: mass spectra for which dark photon decays into DM pairs, i.e., $m_X > 2m_1$

3-year data collection under the zero background is assumed.
 400 MeV threshold and proposed search strategy are assumed.
 ICARUS can probe the uncovered parameter region by an order of magnitude in the *e* axis.
 p-scattering is preferred for heavier dark photon masses [DK, Machado, Park, Shin, in progress]

Doojin Kim, CERN

iBDM Searches at ICARUS - Gran Sasso

Dark Photon Parameter Space: Visible X decay

 \Box Case study 2: mass spectra for which dark photon decays into lepton pairs, i.e., $m_X < 2m_1$

3-year data collection under the zero background is assumed.
 400 MeV threshold and proposed search strategy are assumed.
 ICARUS can probe the uncovered parameter region by half order of magnitude in the *e* axis.

Model-independent Reach

Non-trivial to find appropriate parameterizations for providing model-independent reaches due to many parameters involved in the model

 \Box Number of signal events N_{sig} is

$$N_{\rm sig} = \sigma_{\epsilon} \mathcal{F} A \, t_{\rm exp} N_e \,, \tag{3}$$

- σ_{ϵ} : scattering cross section between χ_1 and (target) electron
- \mathcal{F} : flux of incoming (boosted) χ_1

 N_e : total # of target electrons-

- *A*: acceptance
- t_{exp} : exposure time

Controllable! (once a detector is determined)

Here determined by distance between the primary (ER) and the secondary vertices (often secondary vertex only overcomes the threshold), other factors such as cuts, energy threshold, etc are absorbed into σ_{ϵ} . Depending on analyses, some factors can be reabsorbed into *A*.

Model-independent Reach: Comprehensive

Doojin Kim, CERN

-13-

iBDM Searches at ICARUS - Gran Sasso

Model-independent Reach: More Familiar Form

□ More familiar parameterization possible with the below modification!

$$\sigma_{\epsilon} \geq \frac{2.3}{\mathcal{F} \cdot A \cdot t_{\exp} \cdot N_{e}}$$

$$\mathcal{F} = 1.6 \times 10^{-4} \text{ cm}^{-2} \text{s}^{-1} \times \left(\frac{\langle \sigma v \rangle_{0 \to 1}}{5 \times 10^{-26} \text{ cm}^{3} \text{s}^{-1}}\right) \times \left(\frac{\text{GeV}}{m_{0}}\right)^{2}, \quad (1)$$

□ Then having

$$\sigma_{\epsilon}$$
 vs. $m_0 (= E_1 = \gamma_1 m_1)$
just like σ vs. m_{DM} in conventional WIMP searches

Model-independent Reach: More Familiar Form

3-year data collection assumed.

Absolute lower bound for visible tri-track events due to the threshold energy of 400 MeV. (The actual lower bound may involve minor modeldependence.)

Smaller thresholds allow to probe smaller cosmological dark matter mass.

-15-

Conclusions and Outlook

<i>v_{DM}</i> Scattering	Non-relativistic (v _{DM} ≪ c)	Relativistic (v _{DM} ~c)
elastic	Direct detection	Boosted DM (eBDM)
inelastic	inelastic DM (iDM)	inelastic BDM (<i>i</i> BDM)

- The boosted (light) DM search is promising and provides a new direction to study DM phenomenology.
- □ Theoretical/phenomenological studies have been actively conducted and in progress.
- □ These ideas can be tested with the actual data taken by **ICARUS experiment** at Gran Sasso.

thank you !

Two-component Boosted DM Scenario

□ A possible relativistic source: BDM scenario (cosmic frontier), stability of the two DM species ensured by separate symmetries, e.g., $Z_2 \otimes Z'_2$, $U(1) \otimes U(1)'$, etc.

Doojin Kim, CERN

iBDM Searches at ICARUS - Gran Sasso

"Relativistic" Dark Matter Search

- ✓ Heavier relic χ_0 : hard to detect it due to tiny/negligible coupling to SM
- ✓ Lighter relic χ_1 : hard to detect it due to small amount

Doojin Kim, CERN

iBDM Searches at ICARUS - Gran Sasso

Production of BDM & Benchmark Model

Production of boosted DM at the universe: two-component boosted DM scenario [Agashe, Cui, Necib, Thaler (2014)]

$$\mathcal{L}_{\text{int}} \ni \underbrace{\frac{\epsilon}{2}}_{F_{\mu\nu}} X^{\mu\nu} + g_{11} \bar{\chi}_1 \gamma^{\mu} \chi_1 X_{\mu} + g_{12} \bar{\chi}_2 \gamma^{\mu} \chi_1 X_{\mu} + \text{h. c. +(others)}$$

Vector portal (e.g., dark gauge boson scenario) [Holdom (1986)]

- □ Fermionic DM
 - ★ χ_2 : a heavier (unstable) dark-sector state
 - ◆ Flavor-conserving neutral current \Rightarrow elastic scattering
 - ✤ Flavor-changing neutral current ⇒ inelastic scattering
- □ Not restricted to this model: various models conceiving BDM signatures
 - BDM source: galactic center, solar capture, dwarf galaxies, assisted freeze-out, semi-annihilation, fast-moving DM etc. [Agashe et al. (2014); Berger et al. (2015); Kong et al. (2015); Alhazmi et al. (2017); Super-K (2017); Belanger et al. (2011); D'Eramo et al. (2010); Huang et al. (2013)]
 - Portal: vector portal, scalar portal, etc.
 - DM spin: fermionic DM, scalar DM, etc.
 - iBDM-inducing operator: two chiral fermions, two real scalars, dipole moment interactions, etc.
 [Tucker-Smith, Weiner (2001); Giudice, DK, Park, Shin (2017)]

Neutrino Fluxes

Doojin Kim, CERN

iBDM Searches at ICARUS - Gran Sasso

Prospective Parameter Reaches for Visibly Decaying Dark Photon

Doojin Kim, CERN

iBDM Searches at ICARUS - Gran Sasso

e-scattering vs. p-scattering

Comparison of cross sections via *e*-scattering and *p*-scattering

 \Box As m_x becomes negligible, *e*scattering is more advantageous than *p*-scattering. \leftarrow smaller suppression by the mass of target electron. □ "More" inelastic scattering shrinks the *e*-scattering preferred region. \Leftarrow *p*-scattering is better at accessing heavier dark sector states.

e-scattering vs. p-scattering

□ As m_0 becomes large, the *e*-scattering preferred region expands. ⇐ Difficulty in accessing heavier dark-sector states via *e*-scattering is relaxed by a larger boost factor of χ_1 .

Doojin Kim, CERN

iBDM Searches at ICARUS - Gran Sasso

Worst Scenario Study

□ One could take all SM single-track involving events as backgrounds: ~30 events/3 years are expected at ICARUS (Gran Sasso) considering SK atm. neutrino measurement.

