

Induced Activity

21st FLUKA Beginners' Course ALBA – Barcelona, Spain 08 – 12 April 2019

FLUKA-Implementation – *Main features*

The generation and transport of decay radiation (limited to γ , b-, b+, Xrays, and Conversion Electrons emissions for the time being) is possible during the same simulation which produces the radionuclides (one-step method). For that, a dedicated database of decay emissions is used, based mostly on information obtained from NNDC, sometimes supplemented with other data and checked for consistency.

As a consequence, results for production of residuals, their time evolution and residual doses due to their decays can be obtained in the same run, for arbitrary decay times and for a given irradiation profile.

FLUKA-Implementation – *Main features*

- up to 4 different decay branching for each isotope/isomer
- all gamma lines down to 0.1-0.01% branching, including X-ray lines following conversion electron emissions
- all beta emission spectra down to 0.1-0.01% branching: the sampling of the beta+/- spectra including screening Coulomb corrections
- Auger and conversion electrons
- Isomers: the present models do not distinguish among ground state and isomeric states (it would require spin/parity dependent calculations in evaporation). A rough estimate (equal sharing among states) of isomer production can be activated in the RADDECAY option.

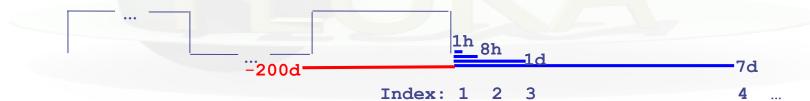
NOTE: In future major release branchings for isomers produced by neutrons <20 MeV will be based on JEFF \rightarrow no more simple 50/50 share

 Different transport thresholds can be set for the prompt and decay radiation parts, as well as some (limited) biasing differentiation (see later)

Input options

Input options - Overview

Input card: RADDECAY


requests simulation of decay of produced radioactive nuclides and allows to modify biasing and transport thresholds (defined with other cards) for the transport of decay radiation

Input card: IRRPROFI

definition of an irradiation profile (irradiation times and intensities)

Input card: DCYTIMES

definition of decay (cooling) times measured from end of irradiation cycle (t=0)

Input card: DCYSCORE

associates scoring detectors (radio-nuclides, fluence, dose) with different cooling times

Input card: AUXSCORE

allows to associate scoring estimators with dose equivalent conversion factors or/and to filter them according to (generalized) particle identity

Particle Types

Name	Number	Units	Description
DOSE	228	GeV/g	Dose (energy deposited per unit mass)
DOSE-EQ	240	pSv	Dose Equivalent (AUXSCORE)
ACTIVITY	234	Bq/cm ³	Activity per unit volume
ACTOMASS	235	Bq/g	Activity per unit mass
SI1MEVNE	236	cm ⁻²	Silicon 1 MeV-neutron equivalent flux
HADGT20M	237	cm ⁻²	Hadrons with energy > 20 MeV

Card: RADDECAY^[1/3] * 1) request radioactive decays 1.0 3.0 0000099999 RADDECAY 0 0 RADDECAY Decays: Active 🔻 3.0 Ŧ Replicas: Patch Isom: h/uLPB: ignore 🔻 ignore 🔻 h/µ Int: ignore 🔻 h/u WW: ignore 🔻 e-e+ Int: e-e+ LPB: ignore 🔻 e-e+ WW: ignore 🔻 ignore 🔻 Low-n Bias: ignore 🔻 Low-n WW: decay cut: 0.0 99999.0 Ŧ prompt cut: Coulomb corr: **WHAT(1)** = 1 radioactive decays activated for requested cooling times "activation study case": time evolution calculated analytically for *fixed* Active Decays: (cooling) times. Daughter nuclei as well as associated radiation is considered at these (fixed) times > 1 radioactive decays activated in semi-analogue mode Semi-Analogue each radioactive nucleus is treated like all other unstable particles (random decay time, daughters and radiation), all secondary particles/nuclei carry time stamp ("age") isomer "production" activated **WHAT(2)** > 0 Patch Isom: On number of "replicas" of the decay of each individual nucleus **WHAT(3)** # Replicas: 7

Card: RADDECAY^[2/3]

RADDECAY

h/µ Int: ignore ▼ e-e+ LPB: ignore ▼ Decays: Active ▼ h/µ LPB: ignore ▼ e-e+ WW: ignore ▼ decay cut: 0.0

3.0 Patch Isom: Ŧ Replicas: ignore 🔻 ignore 🔻 h/u WW: e-e+ Int: ignore 🔻 ignore 🔻 Low-n Biast Low-n WW1 99999.0 prompt cut: Coulomb corri-Ŧ

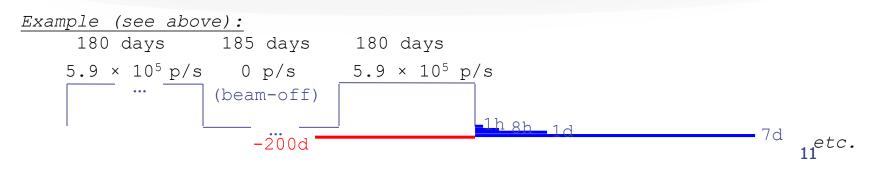
WHAT(4)

 h/μ Int .. Low-n WW

switch for applying various biasing features only to prompt radiation or only to particles from radioactive decays 9 digits, each responsible for a different biasing Example:

5th digit, e+/e-/gamma leading particle biasing applied 000010000 to prompt radiation only 000020000 to decay radiation only 000030000 to both Default: 11111111 (or blank as above)

RADDECAY	re 🔻	Decays: Active V h/µ LPB: ignore V	Patch Isom: ▼ h/µ WW: ignore ▼		3.0 ignore ▼
e-e+ LPB: ignor	re ▼	e-e+ WW: ignore ▼ decay cut: 0.0	Low-n Bias: ignore ▼ promptcut: 99999.0	Low-n WW: Coulomb corr:	ignore ▼ ▼
WHAT(5)			ors to be applied to fined with EMF-CUT		ransport
decay cut:	#		decay radiation, seco		
prompt cut:	#	radiation (see manual			
			10 x Factor for de	cay radiation	
			10 x Factor for pr		
		e.g.:			
		00010002	200		
			$0.1 \times 10 = 1 \rightarrow d$	ecay radiation proc	duction and
				nsport thresholds odified	for EMF are n
				prompt radiation creased by x 20	threshold
		Special cases:			
		. 0000099	999 kill EM cascade fo 000 kill EM cascade fo		


Card: IRRPROFI

)							
* 2) definit	ion of irra	adiation patt	tern				
*	180days	part/s 18	35days		180days	part/s	
IRRPROFI	1.5552E7 5	5. <u>9175E5 1.5</u>	5984E7	0.0	1.5552E7	<u>5.9175E5</u>	
180days p IRRPROFI	oant/s 185days	 180day: Δt: 1.5552E Δt: 1.5984E Δt: 1.5552E 	7 7	p/s:	5.9175E5 0.0 5.9175E5		
WHAT(1,3,5)		irradiation	time (seco	nd)			
Δt:	#						
WHAT(2,4,6) p/s	#	beam inten Note: zero in e.g., to define	tensity is ad	ccepted a		used	
	Notes:		s can be cor			tensities (inter order is assum	calated). ned from first car
Example (see	-		180 days 0 p/s	5.9 × 1	10 ⁵ p/s		
		(beam-off)					10

Card: DCYTIMES									
* 3) defin	ition of cool 1hour	ing times 8hours	1.dou	74242	1month	4months			
DCYTIMES	3600.		1day .64E4	7days 6.048E5	2.592E6				
	8hours 1day	7days 1month t1: 3600. t4: 6.048E5		t2:	28800. 2.592E6		t3: t6:	8.64E4 1.0368E7	

WHAT(1) - WHAT(6)cooling time (in seconds) after the end of the irradiationt1 .. t6Note: Several cards can be defined.

Each cooling time is assigned an index, following the order in which it has been input. This index can be used in option DCYSCORE to assign that particular cooling time to one or more scoring detectors. A negative decay time is admitted: scoring is performed at the chosen time "during irradiation"

Card: DCYSCORE [1/2]

	coring with differen	-				
DCYSCORE	1.0	Sl	nielding		Ţ	JSRBIN
USRBIN	10.0 201.	-70.0	150.0	200.0	5000.05	Shielding
USRBIN	-250.0 -200.	0.0	80.0	80.0	1.08	, c
DCYSCORE	Cooling t: 3600. ^v Det: Shieldi		to Det: 🔻		Kind: Step:	USRBIN V
USRBIN Type: X-Y-Z ▼ Part: ALL-PAR	Xmin: -250.0 T ▼ Vmin: -200.		Unit: 70 Bl Xmax: 150.0 Ymax: 200.0)	Name: NX: NY:	Shielding 80.0 80.0
WHAT(1)	Cooling time index	to he associ	iated with the	detectors		
Cooling: #	Drop down list of avail			detectors		
		able cooling	cirrics			
WHAT(4)WHAT(5)	Detector index/nan	ne of kind (SDUM/Kind)			
Det to Det	Drop down list of avail)		
				/		
VHAT(6)	step lengths in assig	anina indice	es			
Step #						
SDUM	Type of estimator					
Kind	RESNUCLE, USRBIN/E	VENTBIN, US	SRBDX, USRTRA	ACK.		
		,				
Jnits: All quantities are e RESNUCLE Bg	expressed per unit time.	For example	2			
USRBIN	fluence rate / dose rate					12

Card: DCYSCORE^[2/2]

In the semi-analogue decay mode, estimators can include the decay contribution (on top of the prompt one) through association by DCYSCORE with a cooling time index ≤ -1.0

Card: AUXSCORE

	coring wi USRBIN PH	-	conversion factors Target	EWT74						
AUXSCORE		Type: USRBIN ▼ Det: Target ▼	Part: PHOTON ▼ to Det: ▼	Set: EWT74 ▼ Step:						
WHAT(1) Type:			or to associate with estimator types (USRBIN,	USRBDX)						
WHAT(2) Part:	#	Particle or particle	particle or isotope to filter scoring Particle or particle family list. If empty then flair will prompt for Z, A, and S for filtering on specific isotopes							
WHAT(4,5) Det to Det		Detector range Drop down list to s	select detector range of ty	/pe WHAT(1)						
WHAT(6) Step:	#	Step in assignin	g indices of detector ra	ange						
SDUM Set:			for dose equivalent (DO available dose conversion							

NOTE: This card is NOT just for activation-type scorings. It can be used for prompt radiation.

Fluence to effective dose coefficients

- AMB74 is the default choice for dose equivalent calculation (scoring DOSE-EQ without AUXSCORE card)
- Conversion coefficients from fluence to effective dose are implemented for three different irradiation geometries:
 - anterior-posterior
 - rotational
 - WORST ("Working Out Radiation Shielding Thicknesses") is the maximum coefficient of anterior-posterior, posterior-anterior, right-lateral and left-lateral geometries. It is recommended to be used for shielding design.
- Implemented for radiation weighting factors recommended by ICRP60 (e.g., SDUM=EWT74) and recommended by M. Pelliccioni (e.g., SDUM=EWTMP).
- Implemented for protons, neutrons, charged pions, muons, photons, electrons (conversion coefficients for other particles are approximated by these)
- Zero coefficient is applied to all heavy ions

Conversion Coefficients (Examples) 10⁵ [pSv cm²] ICRP74 Ж Pelliccioni \diamond 10⁴ AMB74 Ambient Dose Equ. Conv. 10³ 10² 10⁵ [pSv cm²] ICRP74 Ж 10¹ Pelliccioni -1 \diamond 10⁴ Pelliccioni -2 EWT74 10⁰ Effective Dose Conv. Factor EWTMP 10⁻¹⁰ 10⁻¹² 10⁻⁶ 10⁻⁸ 10⁻⁴ 10³ Energy in GeV 10² 10¹ Neutrons, WORST 10⁰ 10⁻⁸ 10⁻² 10⁻¹² 10⁻¹⁰ 10⁻⁶ 10⁻⁴ 10⁰ 10² 10⁴ Energy in GeV

For more info: <u>http://cern.ch/info-fluka-discussion/download/deq2.pdf</u>

16

Card:	RESN		3]						
RESNUCLE	3.(0 -26.	0	0	FLOOR	TUN_	FLOO		
RESNUCLE Max Z:		Type: All ▼ Max M:		Unit: Reg:	26 BIN ▼ FLOOR ▼	Name: Vol:	TUN_FLOO		
Scoring of residual nuclei or activity on a region basis WHAT(1) type of products to be scored									
Туре:	1.0	spallation products with multigroup tre	•	nteractions	except for low-e	energy neutro	n interactions, i		
	2.0	products from low- information is availa	energy neutro	on interaction	ons (provided the	2			
	3.0 <= 0.0	all residual nuclei a resets the default (available, se	ee above)				
WHAT(2) Unit:		logical output un	it (Default =	= 11.0)					
WHAT(3) Max Z:		Maximum atomic Default: according					the scoring regi		
WHAT(4) Max M:		Maximum M = N of the residual nucl Default: maximum the scoring region.	ei distribution	(NMZ_mir	· · · · · · · · · · · · · · · · · · ·	nt(s) of the m	aterial assigned		

Card:	RESNUCLEi ^[2/3]	

RESNUCLE Max Z:	Type: All ▼ Max M:	Unit: 26 BIN ▼ Reg: FLOOR ▼	Name: TUN_FLOO Vol:
WHAT(5) Reg:	scoring region number (Default = 1.0 ; -1.0 c		gions)
WHAT(6) Vol:	volume of the region i (Default = 1.0)	n cm ³	
SDUM Name:	character string ident (max. 10 characters)	ifying the detector	

Notes:

- 1. In the case of heavy ion projectiles the default NMZ, based on the region material, is not necessarily sufficient to score all the residual nuclei, which could include possible ion fragments
- 2. Residual nuclei from low-energy neutron interactions are only scored if that information is available in the low-energy neutron data set (see Manual)
- 3. Note: also protons are scored (at the end of their path)

```
Card: RESNUCLEi [3/3]
**** Isotope Yield as a function of Mass Number ****
**** (nuclei / cmc / pr) ****
A_min: 1 - A_max: 198
```

A:	186	1.5870372E-08	+/-	9.900000E+01	00
A:	185	3.7605012E-09	+/-	9.900000E+01	양
A:	184	1.4581326E-08	+/-	9.900000E+01	90
A:	183	1.0712972E-08	+/-	9.900000E+01	90
A:	182	7.4882118E-09	+/-	9.900000E+01	90

**** Isotope Yield as a function of Atomic Number **** **** (nuclei / cmc / pr) ****

Z min: 1 - Z max: 78

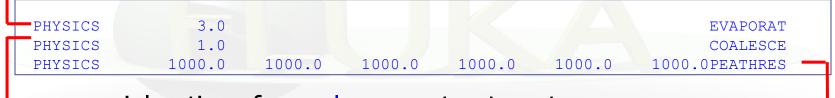
Ζ:	74	5.2413383E-08 +/	- 9.900000E+01 %
Z:	42	3.0072785E-07 +/	- 9.900000E+01 %
Ζ:	41	4.7906228E-08 +/	- 9.900000E+01 %
Ζ:	40	3.7605012E-09 +/	- 9.900000E+01 %
Z:	38	3.7605012E-09 +/	- 9.900000E+01 %

. . .

. . .

. . .

**** Residual nuclei distribution **** **** (nuclei / cmc / pr) ****


Α\	Z 68	69	70	71	72	73	74	75	76	77	78
186	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.59E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/-99.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %
185	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.76E-09	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/-99.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %
184	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.46E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/-99.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %
183	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.07E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/-99.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %	+/- 0.0 %

19

Card: PHYSICS

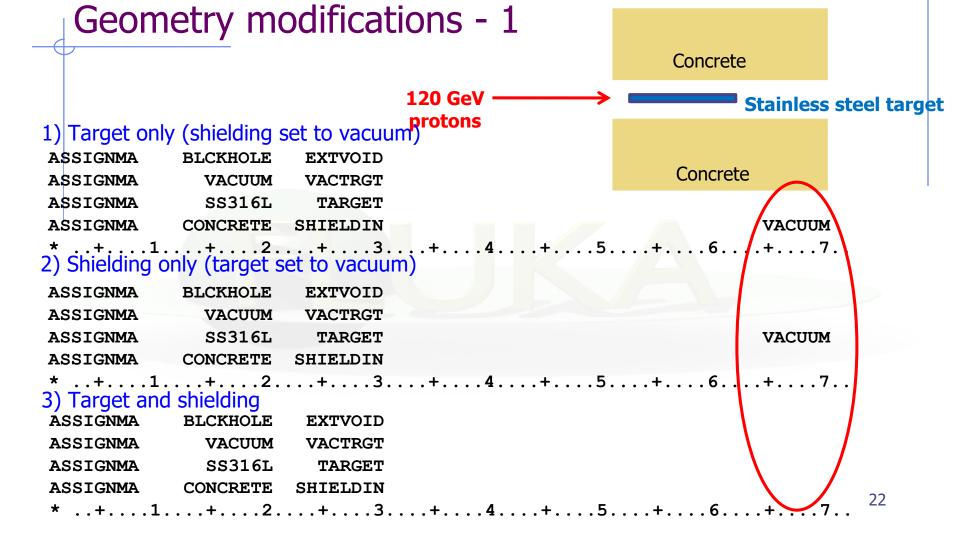
Please activate the following two cards if residuals are of interest:

switch to activate evaporation of heavy fragments (up to A=24, CPU expensive)

special options for coalescence treatment

use **PEANUT** model at all energies

ISOTOPE 'beam'


to simulate a radioactive source:

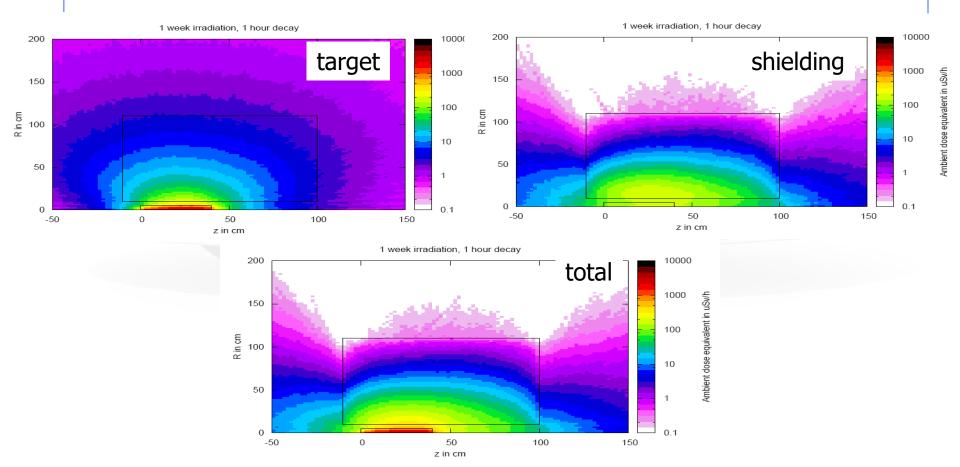
Radioactive source of ⁶⁰Co (two main γ-emissions: 1332.5 keV and 1173.2 keV) cylindrical shape, 2cm diameter, 2mm height along z, centre of base of cylinder at origin

BEAM						ISOTOPE
HI-PROPE	27.0	60.0				
BEAMPOS	0.0	0.0	0.1	0.0	0.0	0.0
BEAMPOS	0.0	1.0	0.0	0.2	0.0	0.0CYLI-VOL

*BEAM	Beam: Momentum ▼	p:	Part: ISOTOPE V
∆p: Flat ▼	Δp:	∆¢: Flat ▼	Δφ:
Shape(X): Rectangular v	Δx:	Shape(Y): Rectangular v	Δy:
BEAMPOS	Rin: 0.0	Rout: 15.0	Type: SPHE-VOL V
BEAMPOS	×: 0.0	y: 0.0	z: 0.0
	COSX:	cosy:	Type: NEGATIVE V
SHI-PROPE	Z: 39.	A: 90.	Isom:

request decay by the RADDECAY card

Geometry modifications - 2


Material for second step:

Can only be set to VACUUM or BLCKHOLE, not to AIR or any other material. Otherwise, the following error is obtained:

*** Vacuum and Blackhole only permitted as alternate radioactive product material *** Abort called from ASMCRD reason RAD. DECAY MAT NOT 1/2 Run stopped! STOP RAD. DECAY MAT NOT 1/2

Future FLUKA releases will allow setting other materials for second step (e.g. to simulate insertion of 'fresh' shielding for activation). These effects can be currently estimated only with 'third-party' two-step methods

Geometry modifications - 3

Summary of main input cards

requests simulation of decay of produced radioactive nuclides and allows to modify biasing and transport thresholds (defined with other cards) for the transport of decay radiation

IRRPROFI

definition of an irradiation profile (irradiation times and intensities)

DCYTIMES

definition of decay (cooling) times

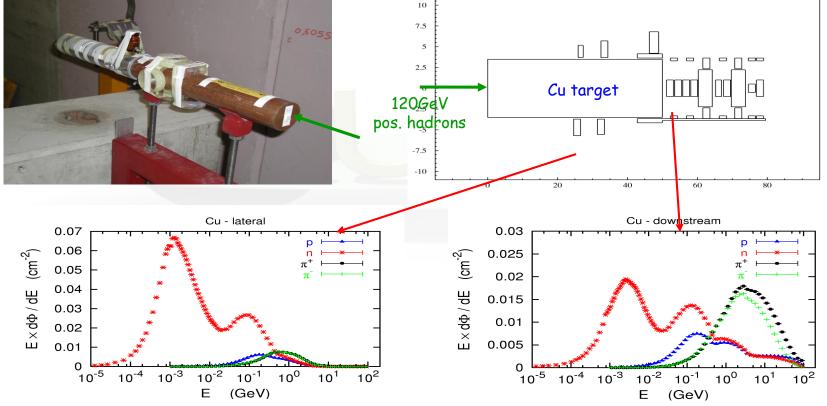
DCYSCORE

associates scoring detectors (radio-nuclides, fluence, dose equivalent) with different cooling times

AUXSCORE

allows to associate scoring estimators with dose equivalent conversion factors or/and to filter them according to (generalized) particle identity

PHYSICS


switch to activate the evaporation of heavy fragments (up to A=24) and the simulation of coalescence

Backup slides

Benchmarks

Benchmark experiment

Irradiation of samples of different materials to the stray radiation field created by the interaction of a 120 GeV positively charged hadron beam in a copper target

Benchmark Experiment

Measurement and calculation of

Specific activities Residual dose equivalent rates

for different cooling times

Benchmark experiment – *Instrumentation 1*

Low-background coaxial High Precision Germanium detector (Canberra)

- use of two different detectors (90 cm³ sensitive volume, 60% and 40% relative efficiency)

Genie-2000 (Ver. 2.0/2.1) spectroscopy software by Canberra and PROcount-2000 counting procedure software

- include a set of advanced spectrum analysis algorithms, *e.g.*, nuclide identification, interference correction, weighted mean activity, background subtraction and efficiency correction
- comprise well-developed methods for peak identification using standard or usergenerated nuclide libraries. HERE: use of user-generated nuclide libraries, based on nuclides expected from the simulation and material composition

Efficiency calibration with LABSOCS

- allows the creation of a corrected efficiency calibration by modelling the sample taking into account self-absorption inside the sample and the correct detector geometry

Reference: M. Brugger, S. Roesler, et al., Nuclear Instruments and Methods A 562 (2006) 814-818

Benchmark experiment – *Instrumentation 2*

Portable spectrometer Microspec

- NaI detector, cylindrical shape, 5 x 5 cm
- folds spectrum with detector response ("calibrated" with ²²Na source)
- physical centre of detector determined with additional measurements with known sources (⁶⁰Co, ¹³⁷Cs, ²²Na) to be 2.4 cm

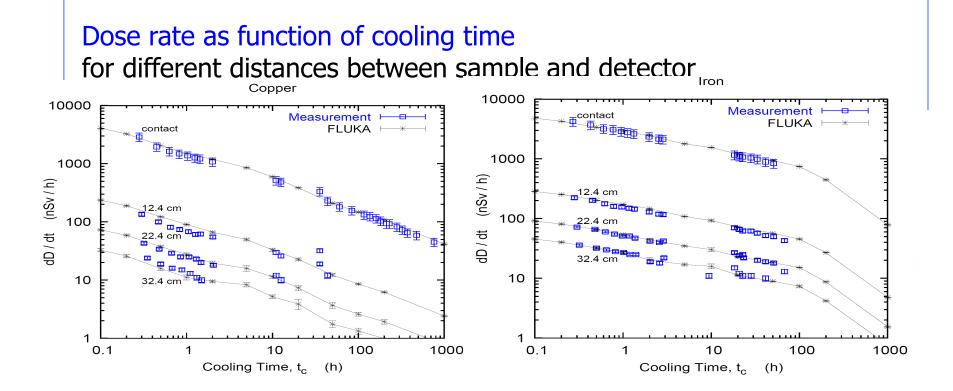
Reference: M. Brugger et al., Radiat. Prot. Dosim. 116 (2005) 12-15

Isotope	Copper	•	Iron		Titanium		Stainless Steel		Aluminum			Concrete			
⁷ Be 53.29d	1.47 ± 0.19	м	1.65 ± 0.22		1.50 ± 0.19		0.98 ± 0.24	м	C,N	0.71 ± 0.09		AI	1.17 ± 0.14		0, C
	0.84 ± 0.25		0.90 ± 0.15												
²² Na 2.60y	0.72 ± 0.11		0.70 ± 0.13	м	0.85 ± 0.11					0.76 ± 0.07		AI	0.86 ± 0.09		Ca,(Si,Mg)
²⁴ Na 14.96h	0.42 ± 0.03		0.48 ± 0.02		0.63 ± 0.02		0.37 ± 0.02		Fe,(Cr,Si)	0.81 ± 0.03		Al,Mg	0.62 ± 0.02		Ca,(Si,Al)
²⁷ Mg 9.46m					0.79 ± 0.14	м				1.52 ± 0.25		Al,Mg			
²⁸ Mg 20.91h	0.25 ± 0.04	-	0.23 ± 0.03	-	0.31 ± 0.02	-	0.29 ± 0.10	M-	Fe,Ni,Si)				0.29 ± 0.02	-	Ca,(Si)
²⁸ AI 2.24m	0.25 ± 0.03	-	0.21 ± 0.02	-	0.31 ± 0.02	-	0.29 ± 0.10	M-	Fe,Ni,Si)				0.29 ± 0.03	-	Ca,(Si)
²⁹ AI 6.56m					0.93 ± 0.25	м									
³⁸ S 2.84h					0.60 ± 0.12	-									
^{m34} CI 32.00m			0.91 ± 0.19	м	1.19 ± 0.16		0.77 ± 0.15		Fe,Cr,(Mn)				1.25 ± 0.07		Са
³⁸ CI 37.24m			0.61 ± 0.08		0.60 ± 0.01		0.58 ± 0.07		Fe,Cr,(Mn)						
³⁹ CI 55.60m			0.64 ± 0.11	м	0.73 ± 0.08		0.66 ± 0.12		Fe,Cr,(Mn)						
	0.39 ± 0.06		0.46 ± 0.05		0.47 ± 0.04	-	0.38 ± 0.05		Fe,Cr,(Mn)				0.98 ± 0.14		Са
³⁸ K 7.64m													1.76 ± 0.20	-	Са
⁴² K 12.36h	0.66 ± 0.10		0.83 ± 0.06		0.95 ± 0.05		0.76 ± 0.09		Fe,Cr,(Mn)				1.21 ± 0.08		Са
⁴³ K 22.30h	0.81 ± 0.10	-	0.77 ± 0.05		0.85 ± 0.03		0.74 ± 0.04		Fe,Cr,(Mn)				1.16 ± 0.05		Са
⁴⁴ K 22.13m															
⁴⁵ K 17.30m															
	0.59 ± 0.16		0.56 ± 0.17	м	0.73 ± 0.12		0.51 ± 0.15	м	Fe,Cr,(Mn)				0.79 ± 0.12		Са
⁴³ Sc 3.89h		-	1.01 ± 0.14		1.28 ± 0.28	-	0.93 ± 0.15		Fe,Cr,(Mn)						
⁴⁴ Sc 3.93h			1.06 ± 0.06		0.88 ± 0.05		0.96 ± 0.08		Fe,Cr,(Mn)				0.83 ± 0.06		Fe,(Ti)
^{m44} Sc 58.60h	0.95 ± 0.12		1.20 ± 0.09		2.13 ± 0.12		1.24 ± 0.09		Fe,Cr,(Mn)	1.08 ± 0.17		Fe,Mn	1.67 ± 0.22		Fe,(Ti)
⁴⁶ Sc 83.79d			0.86 ± 0.07		0.93 ± 0.08		0.89 ± 0.08		Fe,Cr,(Mn)	0.79 ± 0.18		Mn, (Ti, Fe)	0.88 ± 0.10		Fe,(Ti)
⁴⁷ Sc 80.28h	1.09 ± 0.14		1.17 ± 0.10	-	0.87 ± 0.07		1.06 ± 0.09		Fe,Cr,(Mn)	1.04 ± 0.15		Mn,(Ti,Fe)	1.00 ± 0.09		Fe,Ti,(Ca)
⁴⁸ Sc 43.67h			1.47 ± 0.10		1.10 ± 0.04		1.42 ± 0.08		Fe,Cr,(Mn)				1.36 ± 0.25		Fe,Ti,(Ca)
⁴⁸ V 15.97d	1.16 ± 0.08		1.45 ± 0.06		1.11 ± 0.07		1.44 ± 0.11		Fe,Cr,(Mn)	1.07 ± 0.13		Fe,Mn	1.63 ± 0.16		Fe
	0.92 ± 0.14		0.97 ± 0.07				1.02 ± 0.08		Fe,(Cr)				1.06 ± 0.23	м	Fe
⁴⁹ Cr 42.30m		м	1.24 ± 0.12	-			1.06 ± 0.12		Fe,(Cr)						
	1.06 ± 0.13		1.15 ± 0.12		0.64 ± 0.24	м	1.24 ± 0.16		Fe,Cr	0.86 ± 0.16		Fe,Mn	1.33 ± 0.22		Fe
	0.68 ± 0.05		1.15 ± 0.04				1.09 ± 0.03		Fe,(Mn)	0.88 ± 0.07		Fe, Mn	1.39 ± 0.07		Fe
^{m52} Mn 21.10m			1.24 ± 0.09				1.12 ± 0.10		Fe,(Mn)				1.75 ± 0.79	м	Fe
⁵⁴ Mn 312.12d			1.01 ± 0.10				1.08 ± 0.11		Fe,(Mn)	0.96 ± 0.12		Mn, Fe	1.06 ± 0.13		Fe
⁵⁶ Mn 2.58h	0.81 ± 0.06		0.99 ± 0.05				1.33 ± 0.10		Fe	1.53 ± 0.25		Mn	1.03 ± 0.25		Mn,Fe
⁵² Fe 8.28h			1.09 ± 0.13				0.99 ± 0.19	м	Fe,(Mn)						
⁵³ Fe 8.51m															
	0.82 ± 0.09														
⁵⁵ Co 17.53h	0.66 ± 0.09		0.76 ± 0.04				1.03 ± 0.05		Fe,Ni						
56.0			1.13 ± 0.10						-						_
⁵⁶ Co 77.27d	1.04 ± 0.08		1.15 ± 0.10				1.37 ± 0.11		Fe,Ni				0.80 ± 0.20	M	Fe
57.0 - 07.4	0.05 . 0.05		1.79 ± 0.15				1 10 . 0.15			0.00 . 0.01		0 7 1			I
⁵⁷ Co 271.79d ⁵⁸ Co 70.82d			0.38 ± 0.09	M			1.16 ± 0.13		Ni	0.66 ± 0.24	IVI	Cu,Zn,Ni		_	
	0.91 ± 0.09		0.31 ± 0.08	м			0.98 ± 0.10		Ni	0.82 ± 0.19		Cu,Zn,Ni			
⁶⁰ Co 5.27y ⁶¹ Co 99.00m															
⁶² Co 90.00s	0.68 ± 0.08														I
	0.78 + 0.44						1.44 ± 0.07		Ni						
⁵⁷ Ni 35.60h ⁶⁵ Ni 2.52h							1.44 ± 0.07		INI						
⁶⁰ Cu 23.70m	1.46 ± 0.29														
															<u> </u>
	0.87 ± 0.25														
	0.63 ± 0.10														I
⁶³ Zn <u>38.47m</u>	1.05 ± 0.23														
65 7 D 04400	0.62 / 0.00							-							
⁶⁵ Zn 244.26d															
	0.97 ± 0.20														

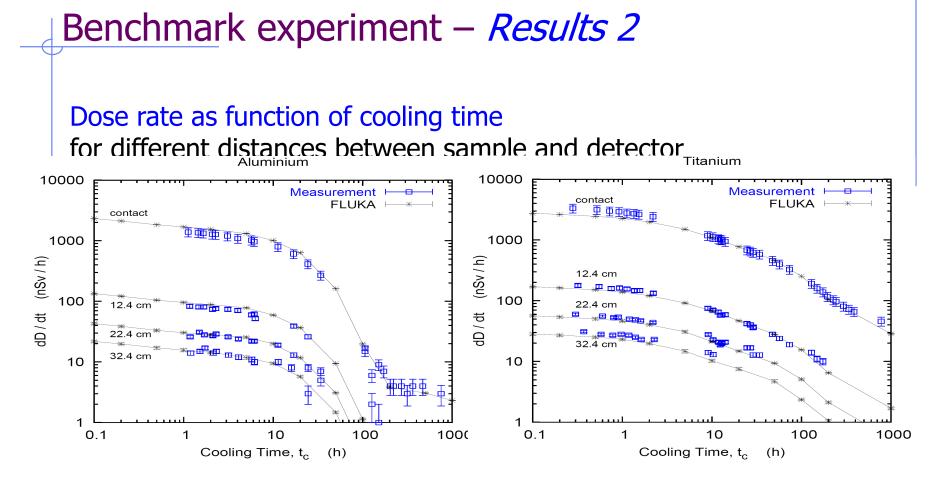
R = Ratio FLUKA/Exp

0.8 < R < 1.2

0.8 < R ± Error < 1.2


Exp/MDA < 1

R + Error < 0.8 or R - Error > 1.2


<u>Reference:</u>

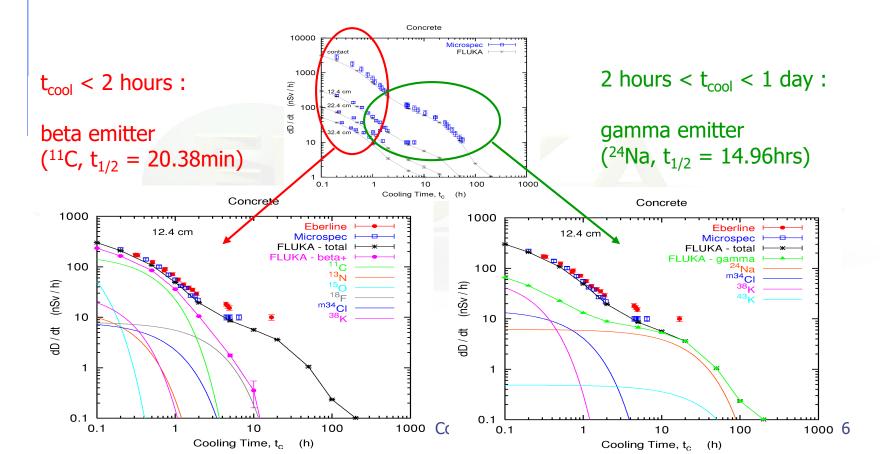
M. Brugger, S. Roesler *et al.*, Nuclear Instruments and Methods A 562 (2006) 814-818

Benchmark experiment – Results 1

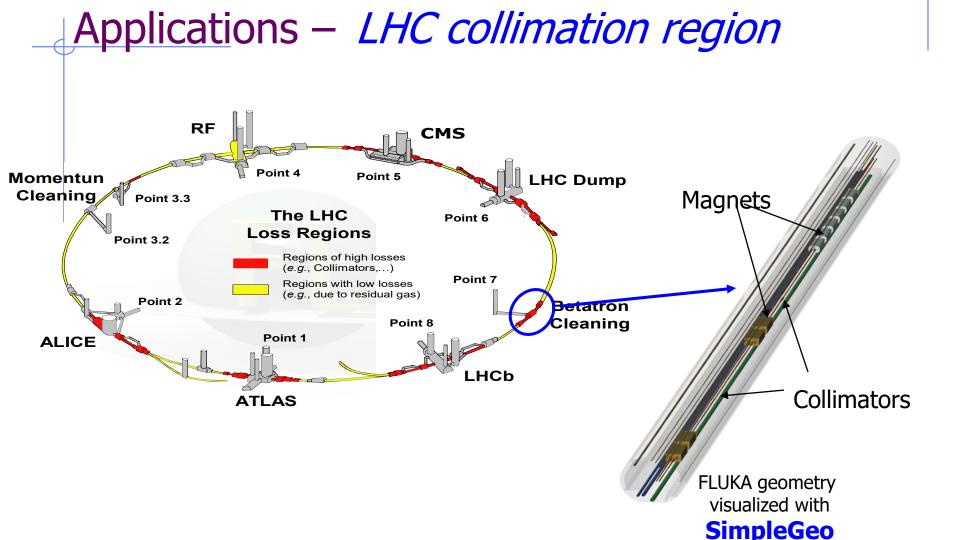
<u>Reference:</u> M. Brugger, S. Roesler et al., Radiat. Prot. Dosim. 116 (2005) 12-15

<u>Reference:</u> M. Brugger, S. Roesler et al., Radiat. Prot. Dosim. 116 (2005) 12-15

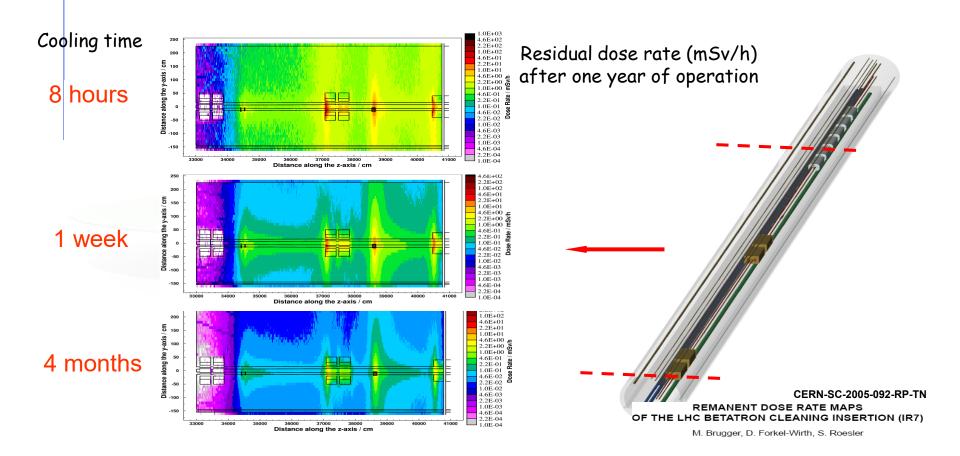
Benchmark experiment – Results 3

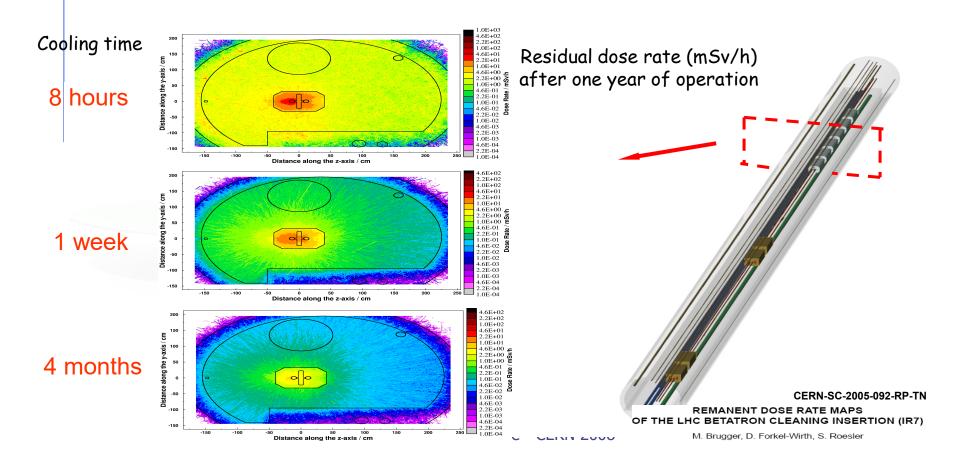

Dose rate as function of cooling time

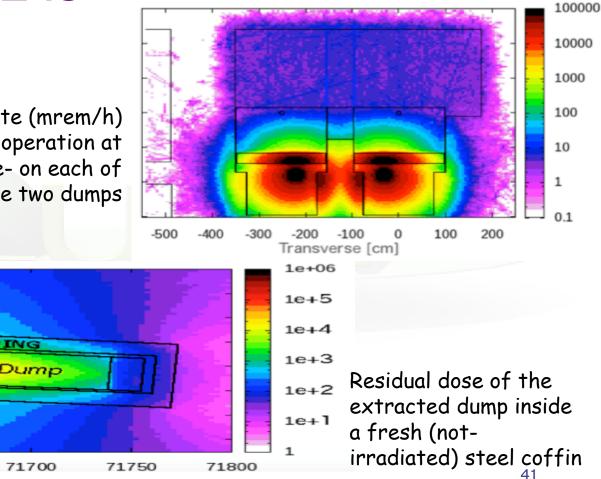
for different distances between sample and detector

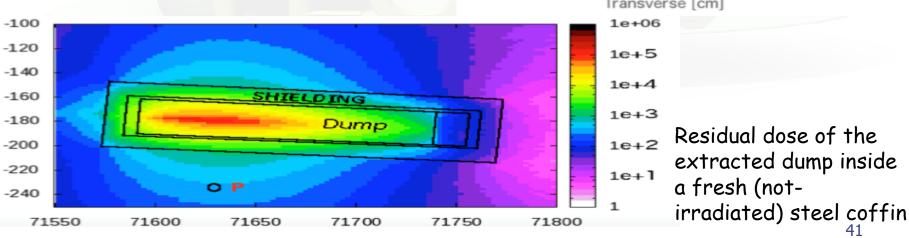


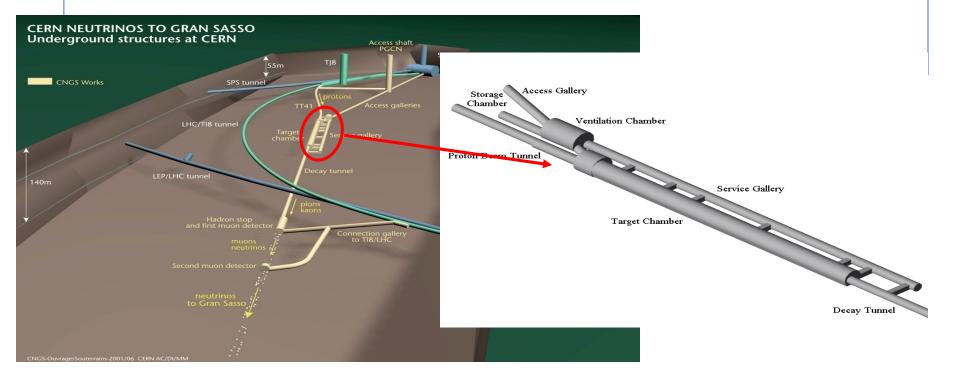
<u>Reference:</u> M. Brugger, S. Roesler et al., Radiat. Prot. Dosim. 116 (2005) 12-15


Benchmark experiment


Applications

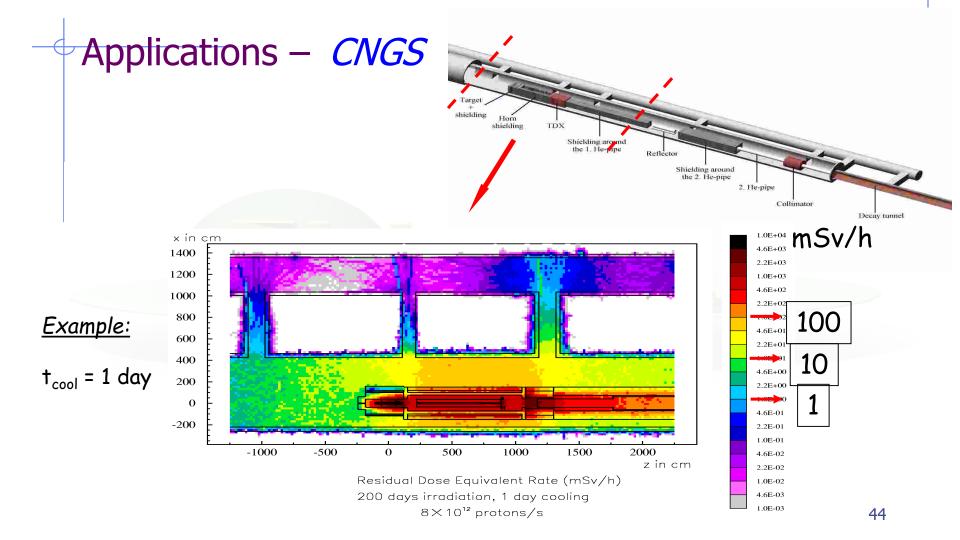

Applications – LHC collimation region


Applications – LHC collimation region



Residual dose rate (mrem/h) After 10 year of operation at 120 kW 4 GeV e- on each of the two dumps

Applications – *CNGS*


Applications – CNGS 1.0E+04y in cm x in cm 500 4.6E+03 400 400 2.2E+03300 300 1.0E+03200 200 4.6E+02 100 100 2.2E+02 0 0 1.0E+02-100 -100 4.6E+01 -200 -200 -300 2.2E+01-200 200 800 000 1200 400 -200 200 400 500 800 1000 1200 z in cm z in cm 1.0E+01y in cm z = 50 cmy in cm z = 600 cmy in cm z = 950 cm4.6E+00F 500 500 500 2.2E+00400 400 400 1.0E+00300 300 300 4.6E-01 200 200 200 2.2E-01 100 100 100 1.0E-01 0 4.6E-02 2.2E-02 -100 -100 -100 1.0E-02 -200 -200 -200 4.6E-03 -300 -300 -300 -200 1.0E-03 -300 -200 200 300 400 500 -300 -100 100 200 300 400 500 -300 -200 -100 100 200 300 400 500 -100 0 100 0 Residual Dose Equivalent Rate (mSv/h) x in cm Residual Dose Equivalent Rate (mSv/h) x in cm Residual Dose Equivalent Rate (mSv/h) x in cm

200 days irradiation, 1 month cooling 8×10¹² protons/s

Δ

200 days irradiation, 1 month cooling 8×10^{12} protons/s

200 days irradiation, 1 month cooling 8×10¹² protons/s

Miscellaneous

FLUKA-Implementation – *History - 1*

1995 – Offline evolution:

An offline code (usrsuwev.f) is distributed together with FLUKA, which allows the offline computation of the time evolution of a radionuclide inventory obtained with RESNUCLE for arbitrary irradiation profiles and decay times.

2002 – Two step method:

The offline code has been adapted for online use, each time a residual nucleus is produced during a particle cascade. This allows storing information on radio-nuclides for certain irradiation parameters and cooling times into an external file. This information can then be read in order to compute residual dose rates due to induced radioactivity (two-step method). Results were benchmarked in numerous irradiation experiments.

2004 - Online:

This capability has been implemented into FLUKA with an exact analytical solution of the Bateman equations describing activity build-up and decay during irradiation and cooling down, for arbitrary irradiation conditions.