

EM interactions

21st FLUKA Beginners' Course ALBA Synchrotron (Spain) April 8-12, 2019

J Topics

- General settings
- Interactions of leptons/photons
 - Photon interactions
 - Photoelectric
 - Compton
 - Rayleigh
 - Pair production
 - Photonuclear
 - Photomuon production
 - Electron/positron interactions
 - Bremsstrahlung
 - Muon interactions
 - Bremsstrahlung
 - Pair production
 - Nuclear interactions
 - Electromagnetic dissociation

- Ionization energy losses
 - Continuous
 - Delta-ray production
- Transport
 - Multiple scattering
 - Single scattering

These are common to all charged particles, although traditionally associated with EM

E-M FLUKA (EMF) at a glance

Energy range for e^+ , e^- , γ : 1 keV (100 eV for γ)- 1000 TeV Full coupling in both directions with hadrons and low-energy neutrons Energy conservation within computer precision Up-to-date γ cross section tabulations from EPDL97 database

EMF is activated by default with most DEFAULTS options, except: EET-TRAN, NEUTRONS, SHIELDING

To de-activate EMF:

With EMF-OFF, E.M. energy is deposited on the spot Consider also the **DISCARD** command

Production and transport of optical photons (Cherenkov, scintillation) is implemented. Since it needs user coding, it is not treated further in this beginners' course.

Photon interactions

Photon interactions modeled in FLUKA

Photon interactions modeled in FLUKA

Photoelectric effect

Absorption of a photon by a target atom, electron ejected, inner-shell vacancy left behind.

Source: Evaluated Photon Data Library (Cullen et al., EPDL97).

7

Atomic de-excitation

Fluorescence vs Auger emission

Next: angular distribution of emitted electron and deexcitation via fluorescence / Auger emission.

Photoelectric effect

Detailed treatment of	Fluorescence
Photoelectron	Angular distribution
Approximate	Auger effect
Effect of photon	Polarization

Fluorescence (and Auger) after photoelectric is activated only with a subset of DEFAULTS: CALORIMEtry, EM-CASCA, ICARUS, PRECISIOn

CPU time vs. precision in small granularity To activate/deactivate it:

EMFFLUO	Flag	Mat1	Mat2	Step	
	Flag > 0: Activ	vate	Flag < 0: De	e-activate	
Narning: check consistency with production/transport thresholds					

FLUKA Beginners' Course

Effect of polarization

The polarization of the incoming photon breaks the azimuthal symmetry in the angular distribution of the emitted electron.

E.g. for polarization along the x axis (theta=90°, phi=0° or 180°) we have

L. Sabbatucci, F. Salvat / Radiation Physics and Chemistry 121 (2016) 122–140

Compton and Rayleigh scattering

Compton and Rayleigh scattering

- Klein-Nishina cross section: free target electron at rest.
- Account for atomic bonds using inelastic Hartree-Fock form factors (very important at low E in high Z materials)
- NEW : Compton with atomic bonds and orbital motion (as better alternative to form factors)
 - Atomic shells from databases
 - Orbital motion from database + fit
 - Followed by fluorescence
- Account for effect of incoming photon polarization

Inelastic Form Factors, Compton profile and Rayleigh scattering are activated only with a subset of DEFAULTS. To activate/deactivate:

EMFRAY Flag Reg1 Reg2 Step

Look in the manual for further details

FLUKA Beginners' Course

Compton scattering

KN: free e⁻ at rest

Incoh. scatt. function: binding via form factor

FLUKA: accounting for atomic shell binding energies and eorbital motion

Ref: T. Boehlen *et al.*, *J Instrum* **7** P07018 (2012)

Figure 4. Compton scattering cross sections differential in the energy of the scattered photon E' at selected initial photon energies (E = 20, 100, 1000 keV) for carbon and lead. The cross sections are computed with the present Compton scattering model, using a fit to tabulations of the incoherent scattering function S(q,Z) from EPDL97 [18], and using the KN cross section.

Effect of polarization on Compton scattering

Effect of polarization on Compton scattering

Azimuthal angle of outgoing photon preferentially along direction perpendicular to polarization.

50-keV photons impinging along Z on water cylinder

Incoming photon polarized along ${\sf X}$

Compton photons preferentially emitted along Y (!)

Polarization

By default, source photons are NOT polarized. Polarization can be set by

Flag1 >= 1 \rightarrow Pol. direction orthogonal to direction of

Fraction + flag2 \rightarrow fraction of polarized/unpolarized or polarized/orthogonally polarized photons (see the manual for further details)

Effect of photon polarization

Deposited dose by 30 keV photons in Water at 3 distances from beam axis as a function of penetration depth for 3 orientations wrt the

e⁻e⁺ Pair Production

- Kinematics: requires presence of target mass, threshold at ~2*511 keV.
- Dominant photon interaction mechanism at energies above ~100 MeV
- Angular and energy distribution of e⁺,e⁻ described correctly (no "fixed angle" theta=m/k or similar approximation)
- No approximations near threshold. Differences between emitted e⁺ and e⁻ at threshold accounted for
- Extended to 1000 TeV taking into account the LPM (Landau-Pomeranchuk-Migdal) effect

Relative importance of processes (sub GeV)

Mass attenuation coefficient $\boldsymbol{\mu}$

```
\mu =N sigma : inverse mean free path
```

Rho: density

 μ /rho is therefore a way to quote the integrated cross section in such a way that it is independent of aggregation state.

Coherent = Rayleigh Incoherent = Compton Pair product. = e-e+ pair prod.

Photomuon production

Muon mass ~ 105 MeV/c^2 . For photon energies above ~ $2*105 \text{ MeV/c}^2$ we can expect muon-+ pair production near target mass.

Relative importance wrt e-e+ pair prod.: $(m_e/m_{\mu})^2 \rightarrow ~2/40000$

Muon pair production by photons is NOT activated by any DEFAULT To activate it use PHOTONUC with SDUM=MUMUPAIR:

PHOTONUC Fing Lambias 0.0 Mati Matz Step MOMOPAIR	PHOTONUC Flag	Lambias	0.0	Mat1	Mat2	Step	MUMUPAIR
---	---------------	---------	-----	------	------	------	----------

Flag controls activation of interactions, with the possibility to select a subset of the photomuon mechanisms (coherent, incoherent, inelastic...) Biasing of photomuon production can be done directly with this card, setting WHAT(2)

Ref: Y.S. Tsai, Rev. Mod. Phys. 46 4 815-851 (1974) + ERRATUM

Photonuclear interactions

Photon-nucleus interactions in FLUKA are simulated over the whole energy range, through different mechanisms:

- Giant Resonance interaction (~10-20 MeV)
- Quasi-Deuteron effect (~50-150 MeV)
- Delta Resonance production (~150-400 MeV)
- Vector Meson Dominance ($\gamma \equiv \rho$, Φ mesons) at high energies

Nuclear effects on the *initial state* (i.e. Fermi motion) and on the *final* **state** (reinteraction / emission of reaction products) are treated by the FLUKA hadronic interaction model (PEANUT) \rightarrow INC + pre-equilibrium + evaporation/fission/breakup (Tuesday lecture)

The (small) photonuclear interaction probability can be enhanced through biasing (see command LAM-BIAS)

FLUKA Beginners' Course

Photonuclear interactions: options

Photonuclear interactions are NOT activated with any default

To activate them:

PHOTONUC Flag	Mat1	Mat2	2 Step
Flag controls activation of subset of the photonuclear	interactions, mechanisms	with	the possibility to select a

Since the photonuclear cross section is very small, PHOTONUC should be always accompanied by LAM-BIAS with SDUM = blank (see lecture on biasing)

LAM-BIAS 0.0 Factor Mat PHOTON

Applications:

electron accelerator shielding and activation neutron background by underground muons (together with muon photonuclear interactions (option MUPHOTON))

Photonuclear int.: example

Reaction: $^{208}Pb(\gamma, x n)$ $20 \le E_{\gamma} \le 140 \text{ MeV}$

Cross section for multiple neutron emission as a function of photon energy, Different colors refer to neutron multiplicity $\ge n$, with $2 \le n \le 8$

Symbols: exp. data (NPA367, 237 (1981) ; NPA390, 221 (1982))

Lines: FLUKA

Photonuclear Interactions: benchmark

Yield of neutrons per incident electron as a function of initial e⁻ energy. Open symbols: FLUKA, closed symbols: experimental data (Barber and George, Phys. Rev. 116, 1551-1559 (1959)) Left: Pb, 1.01 X₀ (lower points) and 5.93 X₀ (upper) Right: U, 1.14 and 3.46 X₀

Electron/Positron interactions

e+/e- interactions modelled in FLUKA

- Delta-ray production (-> EMFCUT)
 - Delta-ray production via Bhabha and Moeller scattering
- Bremsstrahlung production (-> EMFCUT)
 - Energy-differential cross sections based on the Seltzer and Berger database
 - Considers the LPM effect and the soft photon suppression (Ter-Mikaelyan) polarization effect
 - Detailed photon angular distribution fully correlated to energy
- Positron annihilation
 - At rest and in flight according to Heitler.
 - In annihilation at rest, account for mutual polarization of the two photons
- Muon capture

Figure 3.15: Radiative and collision stopping powers for electrons in aluminium, silver (×10) and gold (×100) as functions of the kinetic energy (solid and dashed curves, respectively). Dot-dashed lines represent the high-energy approximation given by Eq. (3.160). Diamonds indicate the critical energy $E_{\rm crit}$ at which the radiative stopping power starts dominating for each material.

FLUKA Beginners' Course

Bremsstrahlung: benchmark

2-MeV electrons on Iron, Bremsstrahlung photon spectra measured (dots) and simulated (histos) at three different angles

Bremsstrahlung: benchmark II

12 and 20.9 MeV electrons on a W-Au-Al target, bremsstrahlung photon spectra in the forward direction measured (dots) and simulated (histos)

Muon interactions

Muon interactions modelled in FLUKA

- Delta-ray production (-> DELTARAY card)
- Bremsstrahlung (-> PAIRBREM card)
 - Consideration of LPM effect
 - Detailed photon angular distribution fully correlated to energy
- Pair production (-> PAIRBREM card)
 - Consideration of LPM effect
 - Correlated angular and energy distribution
- Muon photo-nuclear reactions
 - See next slides
- Muon capture
 - See next slides

Muon Photonuclear Reactions

Schematic view of a μ hadronic interaction.

The interaction is mediated by a virtual photon.

The final state can be more complex

- The cross section can be factorized (following Bezrukov-Bugaev) in virtual photon production and photon-nucleus reaction
- Nuclear screening is taken into account
- Only Vector Meson Interactions are modeled, following the FLUKA mesonnucleon interaction models
- Nuclear effects are the same as for hadron-nucleus interactions

Muon photonuclear reactions: options

 $\mu\,$ photonuclear interactions are NOT activated with any default

To activate them:

MUPHOTON Flag 0.0 0.0 Mat1 Mat2 Step

Flag controls activation of interactions, with the possibility to simulate the interaction without explicit production and transport of secondaries (this gives the correct muon energy loss/straggling)

Since the μ photonuclear cross section is very small, MUPHOTON should be always accompanied by LAM-BIAS (see lecture on biasing)

LAM-BIAS 0.0 Factor Mat MUON+ MUON-

Muon interactions

- Muon photonuc. is less likely than other proc.
- Bremsstrahlung dominates large losses
- Pair production and ionization dominate small energy losses

Ref: Groom D.E. et al, LBNL 44742 (2001).

Figure 4: Differential cross section for total and radiative processes as a function of the fractional energy transfer for muons on iron.

Muon capture

An exotic source of neutron background Basic weak process: μ +p -> ν_{μ} + n Competes with: μ at rest + atom = excited muonic atom ->x rays +g.s. muonic atom

Competition between μ decay Λ_d and capture by nucleus Λ_c In FLUKA: Goulard-Primakoff formula $\Lambda_c \div Z^4_{eff}$ Calculated Z_{eff} , Pauli blocking from data

$$\frac{\Lambda_c}{\Lambda d}$$
 = 9.2 10⁻⁴ for H, 3.1 for Ar, 25.7 for Pb

Nuclear environment from PEANUT Slow projectile, low energy transfer (neutron E=5 MeV on free p) Experimentally: high energy tails in n-spectra

Synchrotron radiation

Synchrotron radiation

A charged particle in a curved trajectory in a magnetic field may emit synchrotron radiation (SR), even in vacuum.

FLUKA can model the emission of SR by any charged particle traversing **up to 2 circular arcs** or helical paths, accounting for the emitted photon polarization, and sampling:

- SR photon energy
- SR photon angle

The emitting charged particle is NOT transported: SR photons are sampled directly.

Readily usable for bending magnets and wigglers (two steps so far).

Synchrotron radiation: cards

SPECSOUR SPECSOUR	ELECTRON 150.0	3.0 0. <mark>0</mark>	-2.00, -0. <mark>5</mark>	000000 <mark>1</mark> -1000.	1.00 <mark>0</mark> 0. <mark>0</mark>	0. <mark>0SYNC-RAS</mark> -0.10 <mark>0</mark> &	
WHAT WHAT WHAT WHAT	<pre>(1) = particle e Default: 3 (2) > 0.0: emitt < 0.0: kinet (3) > 0.0: curva < 0.0: absol (4) = lower limi Default: 1 (5) = x-componen</pre>	mitting the .0 (ELECTRO ing particl ic energy o ture radius ute value o t of the ph .E-7 GeV t of the ma	e radiation N) e momentum of the emitt of the emi of the bendi oton energy	(GeV/c) ing particl tting parti ng magnetic spectrum (d versor	e (GeV) cle trajecto field (T) GeV)	ry (cm)	
WHA I SDUM	(6) = y-componen = SYNC-RAD i SYNC-RDN i	t of the ma f the z-com f the z-com	ignetic fiel iponent of t iponent is <	d versor he magnetic 0.0	field verso	r is > 0.0	
	SYNC-RAS i and the ma sign to th SYNC-RDS i the second	f the z-com gnetic fiel at of the f f the z-com arc (if pr	ponent of t d of the se irst arc. ponent is < esent) has	he magnetic cond arc (i 0.0 and th opposed sig	field verso f present) h e magnetic f n to that of	r is > 0.0 as opposed ield of the first	

FLUKA Beginners' Course

Synchrotron radiation: cards (continuation card)

SPECSOUR SPECSOUR	ELECTRON 150.0	3.0 -2.0 0.0 -0.5	0.000000 <mark>1</mark> -1000.	1.00 <mark>0</mark> 0.0	0. <mark>0</mark> SYNC-RAS -0.10 <mark>0</mark> &	
I						I
Continua	tion card:					
WHAT(1)	<pre>= length of the Default = 100.</pre>	emission arc 0 cm	or helical	path (cm)		
WHAT(2)	<pre>= x-coordinate o same length (s</pre>	f the startin ee Note 1)	g point of	a possibl	e second path	of
WHAT(3)	= y-coordinate o	f the startin	g point of	the secon	d path (see No [.]	te 1)
WHAT(4)	= z-coordinate o	f the startin	g point of	the secon	d path (see No	te 1)
WHAT(5)	<pre>= x-component of</pre>	the emitting	particle d	irection	versor at the	
	beginning of t	he second pat	h (see Note	s 1 and 2)	
WHAT(6)	= y-component of	the emitting	particle d	irection	versor at the	
SDUM	= "&" in any pos format is used	ne second pat ition in colu)	n (see Note mns 71-78 (s I and 2 or in las) t field if fre	9

Synchrotron radiation: 1-arc example

Synchrotron radiation: 2-arc example

A comment about the units

All simulation results for the synchrotron radiation SPECSOUR are quoted **per simulated synchrotron radiation photon**.

Enom the output file:	<<< Synchrotron radiation source n. 1 >>>
rrom me ourput me.	Emitting particle: ELECTRON P: 3.00000 GeV/c Initial position : 0.0000000 0.50000000 -1400.0000 Initial direction: 0.0000000 0.10000000 0.99498744
	Magnetic field: 2.0000000 0.0000000 0.0000000 T Nominal curvature radius: 500.34614 cm Nominal arc: 150.00000 cm Arc angle: 0.29979246 rad Actual curvature radius: 500.34614 cm
We would have to scale results	Actual arc: 150.00000 cm Transverse p T: 3.00000 GeV/c and gamma: 5870.85237
by 150*.093061 so as to obtain results <u>per primary emitting</u> <u>particle.</u>	Critical energy: 0.0000119705 GeV
	Photon emission threshold : 1.0000000E-07 GeV Photons >1 eV/nominal unit length: 0.11693748 cm^-1 Photons/unit length 1 eV thres.: 2.38764527E-02 cm^-1 Photons/unit length above thres.: 9.30610323E-02 cm^-1
	Total energy/nominal unit length: 4.55537630E-07 GeV/cm Energy/unit length below thresh.: 7.54228751E-10 GeV/cm Energy/unit length above thresh.: 4.54783401E-07 GeV cm

CM

Synchrotron radiation: a higher-energy example

175-GeV electrons on a few cm in an arc with 9 km turning radius:

Synchrotron radiation: a higher-energy example

Spare slides

Compton profile examples

E: energy of incoming photon, E': energy of the emitted photon

- green = free electron
- blue = binding with form factors
- red = binding with shells and orbital motion

Larger effect at very low energies, where, however, the dominant process is photoelectric absorption. Visible: shell structure near E'=E, smearing from motion at low E'

FLUKA Beginners' Course

Bremsstrahlung: benchmark III

Esposito et al., LNF 93-072

ADONE storage ring

1.5 GeV e⁻

Bremss. on the residual gas in the straight sections

Measured with TLD's matrices at different distances from the straight Section

Here: dose vs. horizontal position at different vertical positions , d=218cm

Energy Deposition spectrum in the Atlas tilecalorimeter prototype

300 GeV muons on iron + scintillator structure

Energy Deposition spectrum in the Atlas tilecalorimeter prototype

300 GeV muons on iron + scintillator structure

Muon-induced neutron background in underground labs

PRD64 (2001) 013012

Neutron production rate as a function of muon energy Stars+line : FLUKA simulation with a fit to a power law. Exp. points: abscissa \rightarrow average μ energy at the experiment's depth: A) 20 m.w.e. B) 25 m.w.e. C) 32 m.w.e. (Palo Verde) D) 316 m.w.e. E) 750 m.w.e. F) 3650 m.w.e. (LVD) G) 5200 m.w.e. (LSD)

m.w.e. = meter of water equivalent

Muon Capture (2)

capture on Calcium Dots: experimental data (Columbia Univ. rep. NEVIS-172 (1969), Phys. ReV. C7, 1037 (1973), Yad. Fiz. 14, 624 (1972)) histograms: FLUKA calculations Emitted: 0.62 neutrons/capture 0.27 protons/capture

Electromagnetic dissociation - Benchmarks

Electromagnetic dissociation cross sections (total, 1nX, 2nX) for 30GeV/n Pb ions on Al, Cu, Sn, and Pb targets.

FLUKA: lines (calculated cross section as a function of target charge) Exp. data: M.B.Golubeva et al. FLUKA Beginners' Course

Electromagnetic dissociation: example

²⁸Si(γ ,tot) as recorded in FLUKA database, 8 interval Bezier fit as used for the Electromagnetic Dissociation event generator.