

FLUKA Beginner's Course

Aim of the exercise:

- 1- Discover biasing power
- 2- Experience region importance
- 3- Use of cylindrical mesh USRBIN
- 4- Plot USRBIN in the Geometry Editor

Start from the solution of ex_Geometry1:

mkdir ex_Biasing

cp ex_Geometry1/ex_Geometry1_final.inp ex_Biasing/ex_Biasing.inp

cd ex_Biasing

(and immediately save flair project) flair ex Biasing.inp

- Proton beam with:
 - 3.5 GeV Gaussian energy profile, 0.8 GeV FWHM
 - Gaussian divergence 1.7 mrad FWHM
 - Origin at (0,0,-0.1) cm
- Target materials: water, aluminum, lead
- In the next slide we enclose the target in a cylindrical capsule filled with CO2 and arrange coaxial cylindrical layers of concrete surrounding the capsule, acting as shielding material 3

Materials

□ Shielding will be made of concrete

- Concrete is not a FLUKA predefined material
- It has to be defined

Concrete:	(mass f	raction)	
Hydrogen	0.01	Aluminum	0.034
Carbon	0.001	Silicon	0.337
Oxygen	0.529	Potassium	0.013
Sodium	0.016	Calcium	0.044
Magnesium	0.002	Iron	0.014

Density: 2.3g/cm³

- □ Assign it to all the shielding regions
- Surround the whole shielding with air

- Enclose biasing within a " #if **BIASFLAG** " statement
- □ First, set the importance to 1, for all regions and particles
- □ Then set importance only for low energy neutrons and hadrons & muons
 - For regions having y>0 set importance to 2ⁿ (n =#layer)
 - For regions having y<0 set importance to 1/2ⁿ (n =#layer)

How to display region importance in the Geometry Editor

8

Scoring

Add one region independent scoring for neutrons (USRBIN)

- $_{\circ}$ To span over the whole geometry
- To have sufficient bins
- To have cylindrical coordinates [i.e. **R-Phi-Z**]
- Unformatted output on unit 54

Run

- □ 2 separate runs, w/ and w/o biasing (do not overwrite results)
- □ 5 cycles, 1000 primaries each

Plot

- USRBIN results in Flair
- Region importance in the Geometry Editor
- □ USRBIN results in the Geometry Editor

Exercise: Importance biasing - Results

Without Biasing

Neutron fluence [n/cm² primary]

With Region Importance Biasing

