

21st FLUKA Beginner's Course ALBA – Barcelona, Spain 08 – 12 April 2019

Aim of the exercise:

- 1- Learn how to assign material to an object
- 2- Learn how to define your own materials
- 3- Learn how to change the input file

Copy the input file from the example_running.inp in a new directory: mkdir ex_Materials ;

cp ../Examples/example_running/example_running.inp ex_Materials/ex_Materials.inp; cd ex_Materials

Open the file ex_Materials.inp with FLAIR (flair ex_Materials) or with your preferred editor to edit the input file and...

- □ add two **compound** materials: BEER and CO₂ (before or after the Geometry, i.e. before GEOBEGIN or after GEOEND)
- □ assign respectively to target (TARGET) and surrounding region (VOID)

Run ex_Materials.inp from the terminal, 3 cycles, 5000 primaries:

\$FLUPRO/flutil/rfluka –N0 -M3 ex_Materials

Tip I: to define a compound material you need both a MATERIAL card (to define, among other properties, material name and density) and a COMPOUND card (to define the composition)

(see the FLUKA basic input lecture or the FLUKA manual)

Tip II: use predefined FLUKA materials as components for your component material (BEER and CO₂)

Tip III: ETHANOL is a compound material too (density: 0.789 g/cm³)

BEER composition (MASS content): 90 % WATER , 10 % ETHANOL (CH_3CH_2OH) BEER density: 1 g/cm³ CO_2 density: 0.001965 g/cm³

Compare with the previous example (example_running directory):

- The probability that a primary proton undergoes an inelastic collision (BEAMPART Star Density in the .out file)
- □ The ENERGY density into the TARGET and the region around it (VOID)

Output from example_running:

1Region # name	volume in cubic cm	ALL-PART Star Density Stars/cm**3 /one beam particle	BEAMPART Star Density Stars/cm**3 /one beam particle	ENERGY Density GeV/cm**3 /one beam particle	EM-ENRGY Density GeV/cm**3 /one beam particle
1 BLKHOLE 2 VOID 3 TARGET	1.00000000D+00 1.00000000D+00 1.00000000D+00	0.00000000000+00 0.0000000000+00 1.9856000000+00	0.000000000D+00 0.000000000D+00 4.568000000D-01	2.846591377D+00 0.000000000D+00 4.774223812D-01	4.592296368D-02 0.00000000D+00 1.342799637D-01
Total (integrated over volume):		1.98560000D+00	4.568000000D-01	3.324013758D+00	1.802029273D-01

Output from ex_Materials:

1Region # name	volume in cubic cm	ALL-PART Star Density Stars/cm**3 /one beam particle	BEAMPART Star Density Stars/cm**3 /one beam particle	ENERGY Density GeV/cm**3 /one beam particle	EM-ENRGY Density GeV/cm**3 /one beam particle
1 BLKHOLE	1.000000000D+00	0.00000000D+00	0.00000000D+00	3.451731025D+00	4.637843745D-02
2 VOID	1.000000000D+00	3.30000000D-02	2.00000000D-02	6.262586343D-03	9.331739073D-04
3 TARGET	1.000000000D+00	1.42800000D-01	1.13400000D-01	2.946018522D-02	4.201055244D-03
Total (integrated over volume):		1.75800000D-01	1.33400000D-01	3.487453796D+00	5.151266660D-02

Using FLAIR :

- □ assign the change momentum to the proton beam (4.34 GeV/c)
- □ modify the beam angular divergence to a FLAT distribution
- □ change the name of a body in the geometry

Open the ex_Materials.inp file with your preferred editor and see how the input file has changed.

Note the change of sign in WHAT(3), in the BEAM card.