

Status and plans of MQXFBP1 prototype magnet

Paolo Ferracin and Friedrich Lackner on behalf of the MQXF collaboration

WP3 Meeting 19 September 2018 CERN

Acknowledgments

CERN

- A. Ballarino, H. Bajas, M. Bajko, B. Bordini, J.C. Perez, S. Izquierdo Bermudez, J. Ferradas Troitino, P. Fessia, C. Fichera, L. Fiscarelli, L. Fleiter, P. Grosclaude, M. Guinchard, P. Hagen, O. Housiaux, F. Lackner, A. Milanese, P. Moyret, H. Prin, R. Principe, E. Rochepault, T. Sahner, S. Sequeira Tavares, E. Todesco, G. Vallone
- BNL
 - M. Anerella, A. Ghosh, P. Joshi, J. Muratore, J. Schmalzle, P. Wanderer
- FNAL
 - G. Ambrosio, J. Blowers, R. Bossert, G. Chlachidze, L. Cooley, E. Holik, S. Krave, F. Nobrega, I. Novitsky, C. Santini, S. Stoynev, T. Strauss, M. Yu
- LBNL
 - D. Cheng, D.R. Dietderich, R. Hafalia, M. Marchevsky, H. Pan, I. Pong, S. Prestemon, E. Ravaioli, G. Sabbi, X. Wang
- SLAC
 - Y. Nosochkov
- CEA Saclay
 - H. Felice
- LASA
 - V. Marinozzi, M. Sorbi
- Tampere Universiity of Technology
 - T. Salmi

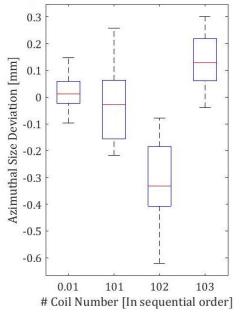
Results of the assembly of MQXFBP1 with practice coils

• Status and plans

- Practice coils
 - 001
 - Cu cable
 - No coating on end-spacer
 - 101 and 102
 - Cable with low-grade RRP strand
 - 103
 - First "real" coil rejected for major non conformity
 - Leads and mid-plan cables broken during reaction



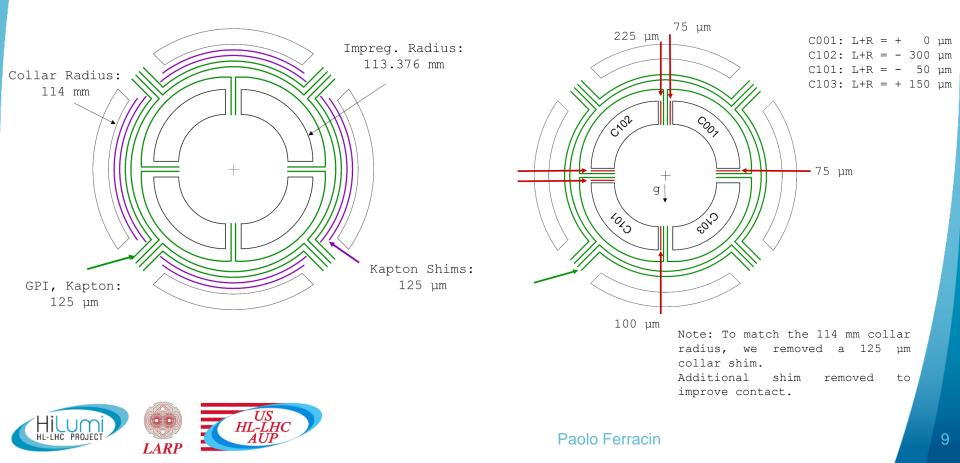
- Practice coils
 - Electrical tests
 - Coil 001
 - Short coil-to-pole
 - Coil-to-endshoe not passed (no coating)
 - Coil 101 and 102 ok
 - Coil 103
 - Weak coil-to-pole
 - Coil-to-endshoe and impulse test not relevant because of broken cables in the end

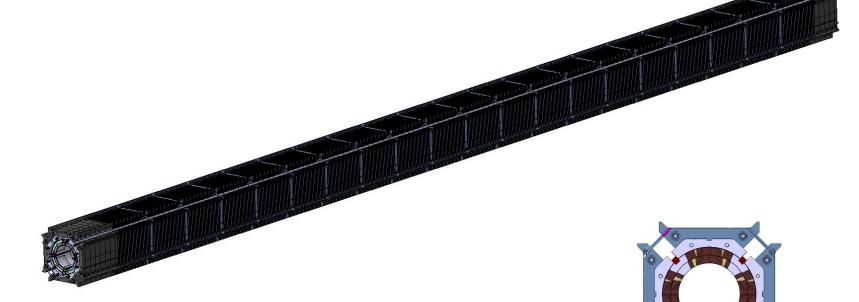

Coil	Coil-to-pole (V)	QH-to-coil (V)	Coil-to-endshoe (V)	QH-to-endshoe (V)	Impulse test (V)
Coil 001	Short coil to pole	3000 (R=24 GΩ)	Not passed	3000 (R=23 GΩ)	2500
Coil 101	500 (R=0.8 GΩ)	3000 (R=17 GΩ)	1000 (R=15 GΩ)	3000 (R=1.2 GΩ)	5000
Coil 102	500 (R=1.4 GΩ)	3000 (R=1.4 GΩ)	1000 (R=5 GΩ)	3000 (R=94 GΩ)	2500
Coil 103	500 (R=0.3 GΩ)	3000 (R=7 GΩ)	Not done	Not done	Not done

- Practice coils
 - Dimensional measurements

MQXFB Azimuthal Coil Size

- Shell-yoke sub-assembly
 - Completed in early 2018

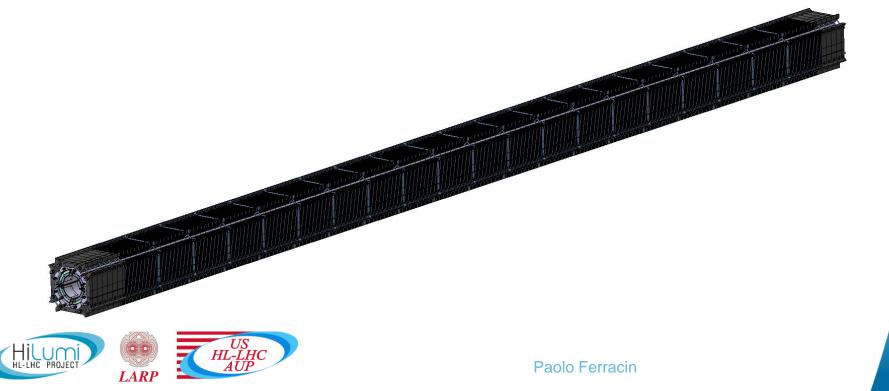

- Coil-pack sub-assembly
 - Work carried-out in 03-04 2018

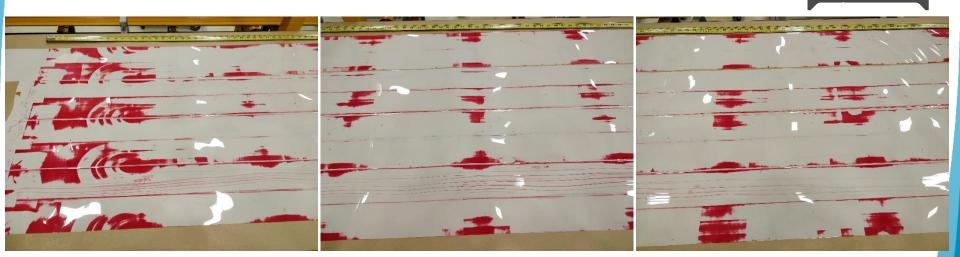


- Coil-pack sub-assembly
 - Shimming-plan (nominal vs. "real")

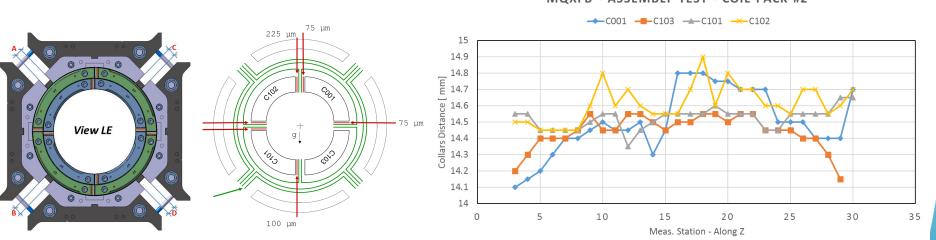
Magnet design MQXFB

• Bolted iron pad


No coil pre-load


Paolo Ferracin

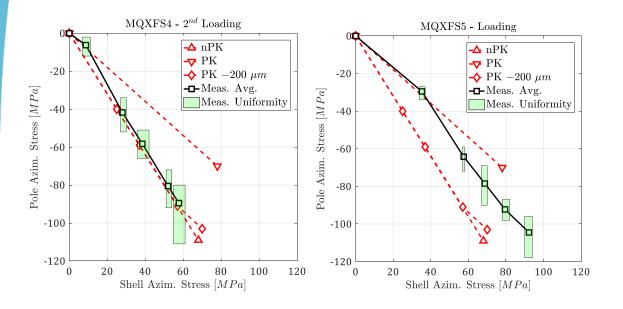
- Coil-pack sub-assembly
 - Fuji test in coil pack #1
 - Important: we bolt only the "thick" pads

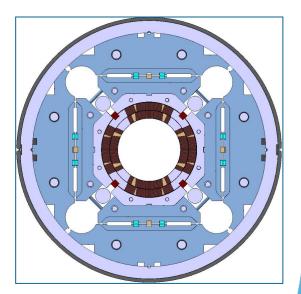

- Coil-pack sub-assembly
 - Fuji test in coil pack #1
 - As usual, hard to draw conclusions
 - Mark in corresponded of the pads where we bolt

View LE

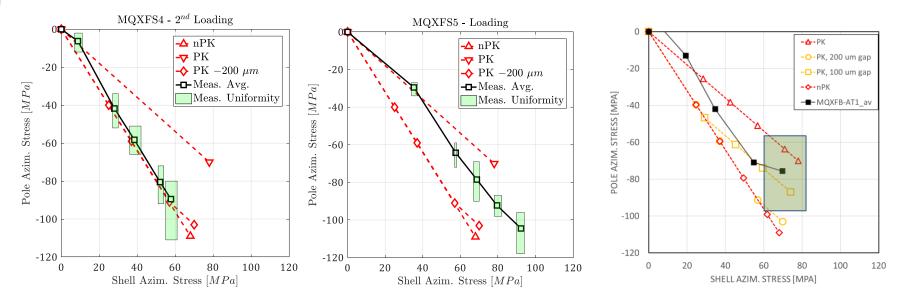
- Coil-pack sub-assembly
 - Measurements of pole gaps
 - Pole-key + ground insulation: 14.4 mm
 - Coil pack 2 total gap: 100 μm .

 Insertion of coil-pack sub-assembly in shell-yoke subassembly and bladder operation in 06-07 2018

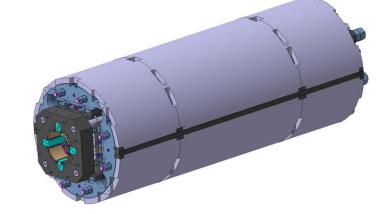

- Strain gauge locations
 - Aluminum shells
 - ϑ, z in 3 axial location, 4 quadrant \rightarrow 24 gauges



- Coils
 - ϑ, z in 3 axial location, 4 coils \rightarrow 24 gauges


- Bladder operation
 - The MQXFS4 and MQXFS5 cases

- Bladder operation
 - MQXFB with practice coil case
 - In between "pole key" and "no-pole-key" but large spread

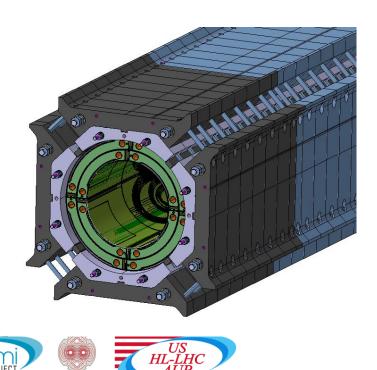

• Pre-load interrupted due to bladder failure

- Axial loading
 - No performed since
 - Very different coil lengths
 - Interference axial loading system with aluminum tube

 Modification/update of the axial system in progress

General comments

- No show stoppers so far, but some issues to address and modifications to implement
 - Many bladders leaked/failed
 - Sometime due to misalignment inside the groove
 - Then, large stroke due to missing shim
 - New bladders fabricated with extruded tube to be delivered by the end of September
 - New tooling developed to extract bladders

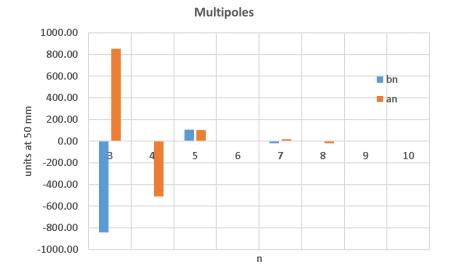

- Modifications improvement of parts/tooling
 - Masters connected to coil pack before insertion

- Modifications improvement of parts/tooling
 - Axial loading system
 - Procedure not verified on MQXFB
 - Reduction of magnet length

LARP

• Magnetic measurements at room temperature

- Magnetic measurements at room temperature
 - Rotating-coil scanner
 - Same approach as for the old "QIMM"
 - On-board encoder and tilt sensor
 - Motor unit on a "chariot"
 - Mechanical extensions for translating and rotating the probe
 - Supported by a tube ID 100 mm
 - PCB-coil length 500 mm
 - Measurement radius ~ 40 mm
 - CCR targets for referring
 magnetic axis to external points


- Magnetic measurements at room temperature
 - Single stretched wire
 - X-Y tables with 155-mm span
 - Fast Digital Integrator
 - FFMM software with user-friendly GUI
 - DC and AC mode

- Magnetic measurements at room temperature
 - B2 is 20% smaller than expected
 - The magnetic center is displaced toward the quadrant 3 (coil 103)
 - Multipoles show large values with a patter compatible with an issue in quadrant 3 (coil 103)
 - Results from stretched wire not exploitable (the alignment procedure was not converging)

From the inner 12 positions (total 6 m)						
	Average	Average STD				
I.	10	-	А			
B2	-3.519	0.005	mT			
Angle	-	0.91	mrad			
Х	-10.62	0.23	mm			
Y	-10.79	0.12	mm			

- Electrical tests after magnet loading
 - All QH to coil passed

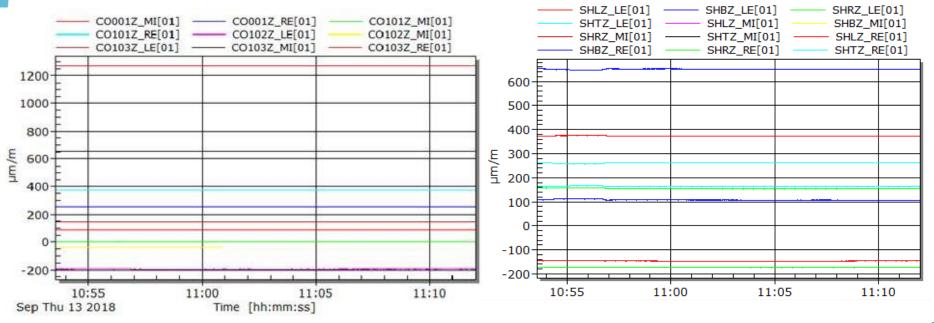
			R (GΩ)					
Borne +	Borne -	500 V / 1'	1 kV / 1'	1.5 kV / 1'	2 kV / 1'	2.5 kV / 1'	3 kV / 1'	
4 poles + QHS	Gnd + Cold Bore Tube + All	7.23	6.82	5.8	1.361	1.046	Brk Dwn	
Pole 1 + QHS 1	Gnd + Cold Bore Tube + All	17.16	13.61	11.92	3.68	3.69	2.84	
Pole 2 + QHS 2	Gnd + Cold Bore Tube + All	18.86	20	18.31	6.85	1.66	7.62	
Pole 3 + QHS 3	Gnd + Cold Bore Tube + All	5.59	4.03	4.64	1.419	1.625	2.21	
Pole 4 + QHS 4	Gnd + Cold Bore Tube + All	8.71	6.42	6.32	1.952	Brk Dwn	N. A	
Pole 1	QHs 1	9.63	10.94	11.23	7.6	7.41	8.33	
Pole 2	QHs 2	8.24	8.67	9.64	7.53	11.7	6.56	
Pole 3	QHs 3	4.09	4.97	4.35	1.54	5.74	1.673	
Pole 4	OHs 4	6.68	6.24	6.16	4.57	4.6	5.05	
Pole 1	Gnd + Cold Bore Tube + All	5.46	5.44	3.41	2.87	3.61	2.1	
Pole 2	Gnd + Cold Bore Tube + All	5.42	5.4	5.26	2.15	4.48	4.67	
Pole 3	Gnd + Cold Bore Tube + All	3.93	2.84	1.123	0.886	1.205	1.04	
Pole 4	Gnd + Cold Bore Tube + All	3.98	3.68	1.857	1.514	Brk Dwn	N. A	
QHs 1	Gnd + Cold Bore Tube + All	9.63	9.58	8.71	7.57	8.26	12.9	
QHs 2	Gnd + Cold Bore Tube + All	7.08	7.28	5.84	5.35	6.07	6.4	
QHs 3	Gnd + Cold Bore Tube + All	4	3.82	2.03	1.31	2.35	2.01	
QHs 4	Gnd + Cold Bore Tube + All	6.79	6.47	5.57	5.09	5.67	5.34	

- Electrical tests after magnet loading
 - Coil 103 to ground did not pass (only up to 2 kV)
 - To be checked after disassembly

			R (GΩ)				
Borne +	Borne -	500 V / 1'	1 kV / 1'	1.5 kV / 1'	2 kV / 1'	2.5 kV / 1'	3 kV / 1'
4 poles + QHS	Gnd + Cold Bore Tube + All	7.23	6.82	5.8	1.361	1.046	Brk Dwn
Pole 1 + QHS 1	Gnd + Cold Bore Tube + All	17.16	13.61	11.92	3.68	3.69	2.84
Pole 2 + QHS 2	Gnd + Cold Bore Tube + All	18.86	20	18.31	6.85	1.66	7.62
Pole 3 + QHS 3	Gnd + Cold Bore Tube + All	5.59	4.03	4.64	1.419	1.625	2.21
Pole 4 + QHS 4	Gnd + Cold Bore Tube + All	8.71	6.42	6.32	1.952	Brk Dwn	N. A
Pole 1	QHs 1	9.63	10.94	11.23	7.6	7.41	8.33
Pole 2	QHs 2	8.24	8.67	9.64	7.53	11.7	6.56
Pole 3	QHs 3	4.09	4.97	4.35	1.54	5.74	1.673
Pole 4	QHs 4	6.68	6.24	6.16	4.57	4.6	5.05
Pole 1	Gnd + Cold Bore Tube + All	5.46	5.44	3.41	2.87	3.61	2.1
Pole 2	Gnd + Cold Bore Tube + All	5.42	5.4	5.26	2.15	4.48	4.67
Pole 3	Gnd + Cold Bore Tube + All	3.93	2.84	1.123	0.886	1.205	1.04
Pole 4	Gnd + Cold Bore Tube + All	3.98	3.68	1.857	1.514	Brk Dwn	N. A
QHs 1	Gnd + Cold Bore Tube + All	9.63	9.58	8.71	7.57	8.26	12.9
QHs 2	Gnd + Cold Bore Tube + All	7.08	7.28	5.84	5.35	6.07	6.4
QHs 3	Gnd + Cold Bore Tube + All	4	3.82	2.03	1.31	2.35	2.01
QHs 4	Gnd + Cold Bore Tube + All	6.79	6.47	5.57	5.09	5.67	5.34

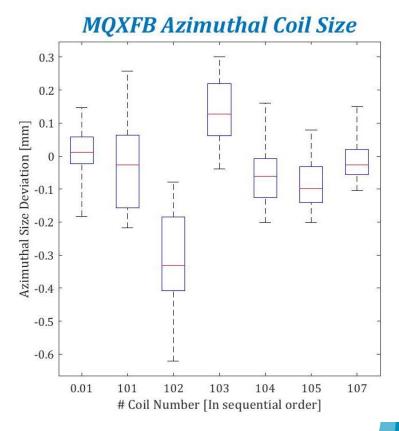
- Electrical tests after magnet loading
 - Coil 001 (spacer not coated) to QHs didn't pass at 3 kV
 - Insulation weakness between QH wire & Saddle
 - Test passed at 3 kV by spacing wires from saddle

			R (GΩ)					
Borne +	Borne -	500 V / 1'	1 kV / 1'	1.5 kV / 1'	2 kV / 1'	2.5 kV / 1'	3 kV / 1'	
4 poles + QHS	Gnd + Cold Bore Tube + All	7.23	6.82	5.8	1.361	1.046	Brk Dwn	
Pole 1 + QHS 1	Gnd + Cold Bore Tube + All	17.16	13.61	11.92	3.68	3.69	2.84	
Pole 2 + QHS 2	Gnd + Cold Bore Tube + All	18.86	20	18.31	6.85	1.66	7.62	
Pole 3 + QHS 3	Gnd + Cold Bore Tube + All	5.59	4.03	4.64	1.419	1.625	2.21	
Pole 4 + QHS 4	Gnd + Cold Bore Tube + All	8.71	6.42	6.32	1.952	Brk Dwn	N. A	
Pole 1	QHs 1	9.63	10.94	11.23	7.6	7.41	8.33	
Pole 2	QHs 2	8.24	8.67	9.64	7.53	11.7	6.56	
Pole 3	QHs 3	4.09	4.97	4.35	1.54	5.74	1.673	
Pole 4	QHs 4	6.68	6.24	6.16	4.57	4.6	5.05	
Pole 1	Gnd + Cold Bore Tube + All	5.46	5.44	3.41	2.87	3.61	2.1	
Pole 2	Gnd + Cold Bore Tube + All	5.42	5.4	5.26	2.15	4.48	4.67	
Pole 3	Gnd + Cold Bore Tube + All	3.93	2.84	1.123	0.886	1.205	1.04	
Pole 4	Gnd + Cold Bore Tube + All	3.98	3.68	1.857	1.514	Brk Dwn	N. A	
QHs 1	Gnd + Cold Bore Tube + All	9.63	9.58	8.71	7.57	8.26	12.9	
QHs 2	Gnd + Cold Bore Tube + All	7.08	7.28	5.84	5.35	6.07	6.4	
QHs 3	Gnd + Cold Bore Tube + All	4	3.82	2.03	1.31	2.35	2.01	
QHs 4	Gnd + Cold Bore Tube + All	6.79	6.47	5.57	5.09	5.67	5.34	



• Lifting test

- Lifting test
 - No significant variation of coil and shell axial strain during lifting

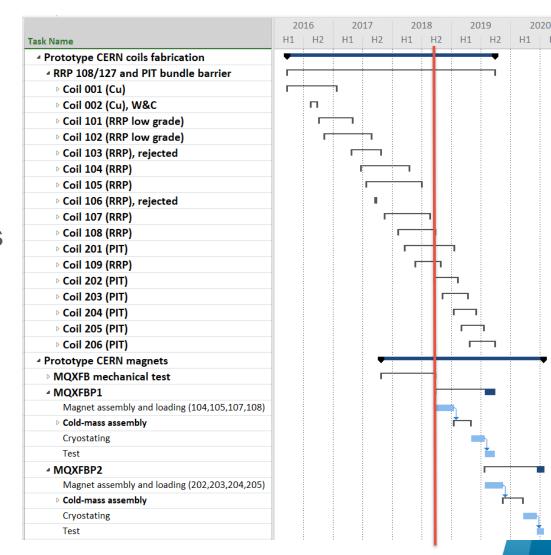

• Results of the dummy assembly of MQXFBP1

• Status and plans

Next steps

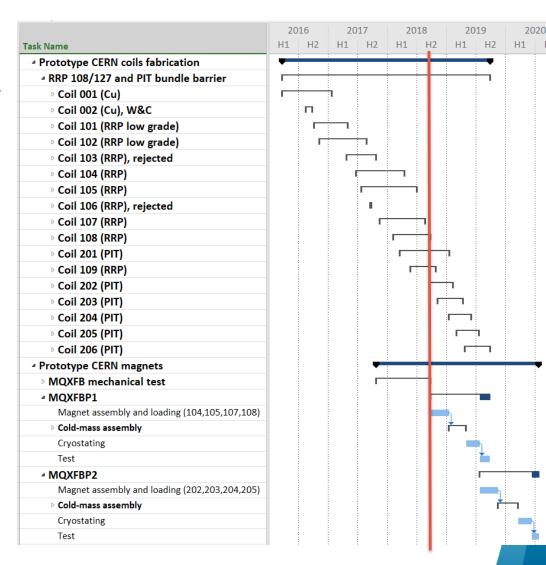
- Disassembly of magnet and coil-pack (09/2018)
- Assembly of the MQXFBP1 magnet with coils 104, 105, 107, 108 (?) in 10-12/2018
 - Better results for dimensional measurements in 104,105,107
 - Weak insulation coil to pole on coil 104 and 105, but still >MΩ

Coil	Coil-to-pole (V)	QH-to-coil (V)	Coil-to-endshoe (V)	QH-to-endshoe (V)
Coil 104	500 (R=20 MΩ)	3700 (R=8.5 GΩ)	1000 (R=18 GΩ)	3700 (R=19 GΩ)
Coil 105	500 (R=30 MΩ)	3700 (R=13 GΩ)	1000 (R=110 GΩ)	3700 (R=26 GΩ)
Coil 107	500 (R=510 MΩ)	3700 (R=12 GΩ)	1000 (R=54 GΩ)	3700 (R=30 GΩ)
Coil 108	To be done	To be done	To be done	To be done



CERN prototype program Coil fabrication

- 1 coil with Cu cable and 2 with low grade Nb₃Sn completed
- 1st prototype coils
 - "Old" 1st and 4th coils (103 and 106) rejected for major NC
 - Coils 104, 105, 107, 108 completed
 - Spare coil 109 prepared for impregnation

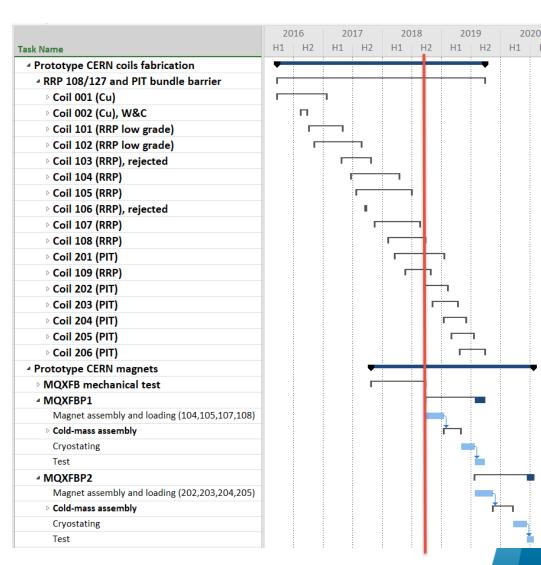


CERN prototype program Coil fabrication

- 2nd prototype coils
 - Coil 201 with major NC, dismissed unless needed
 - Wound and ready for reaction
 - Coil 202 to be wound starting next week

LARP

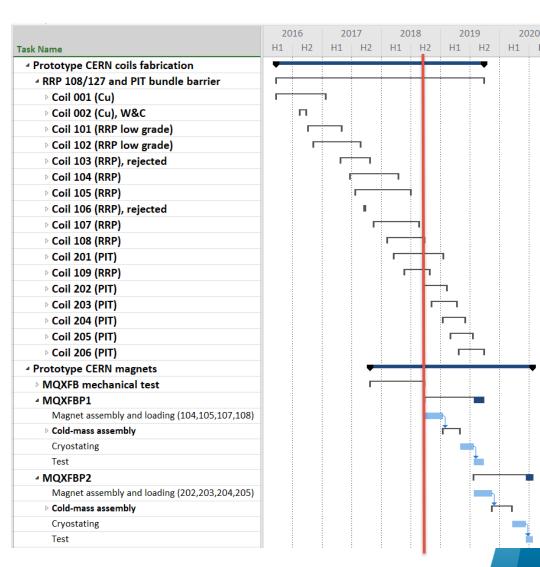
First coil to correct
 b₆



CERN prototype program Magnet fabrication

MQXFBP1

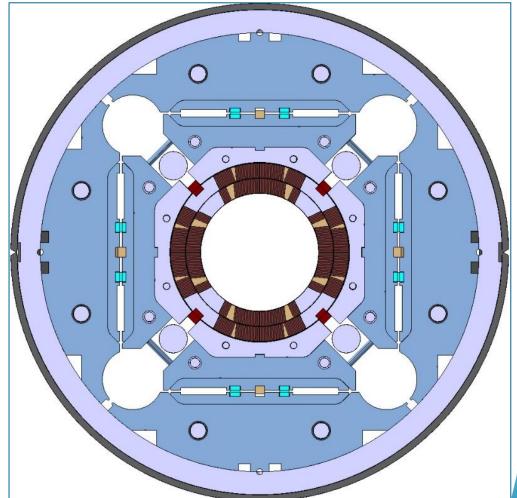
- Coil 104, 105, 107, 108 (109 spare)
- Magnet assembly starts in 10/18
- Cold-mass assembly starts in 01/19
- Cryostating starts in 04/19
- Test in 07-08/19



CERN prototype program Magnet fabrication

MQXFBP2

- Coil 202, 203, 204, 205 (206 spare)
- Magnet assembly starts in 08/19
- Cold-mass assembly starts in 11/19
- Cryostating starts in 02/20
- Test in 05-06/20


Appendix

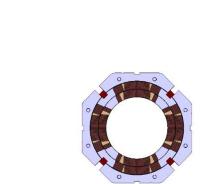
Overview of MQXF design

- OD: 630 m
- Stainless steel shell
 - 8 mm for LHe containment
- Aluminum shell
 - 29 mm thick
- Iron yoke
 - Gaps open
 - 4-fold symmetry
- Iron master plates
 - Bladder and keys
- Iron pad
- SS axial rods
- Aluminum collars
- G10 pole key
- Ti alloy poles

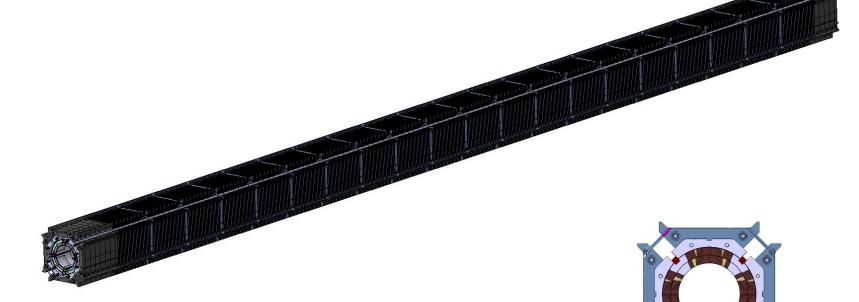
See J. C. Perez

Superconducting coil



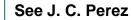

See J. C. Perez

• Pole key for alignment



• Aluminium collar

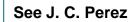
• No coil pre-load

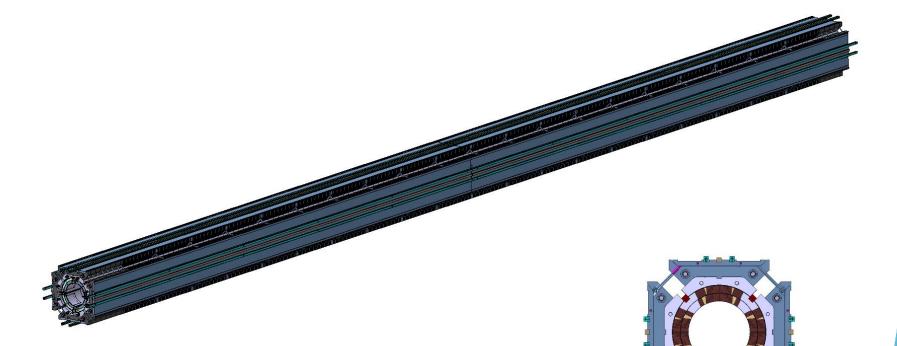




• Bolted iron pad

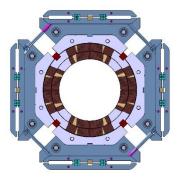
No coil pre-load





Iron master

• Half-length plates for bladders and keys


Loading and alignment keys

• Second iron master

Coil-pack sub-assembly

See J. C. Perez

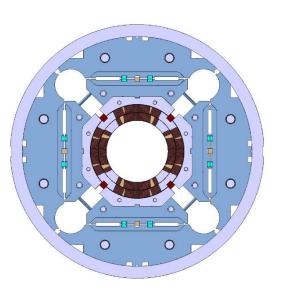
0

0

0

Magnet design MQXFB

Iron yoke laminations


Paolo Ferracin

O

0

• Segmented aluminium shell

See J. C. Perez

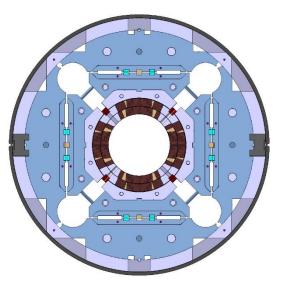
Tack-welding blocks

• Aligned to the yoke

Backing strip

• For Lhe vessel welding

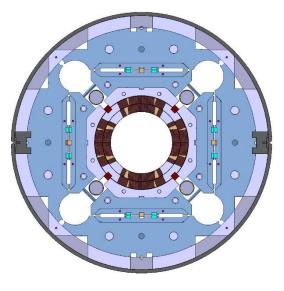
Paolo Ferracin


C

See J. C. Perez

• Welded LHe vessel

• Minimum welding tension



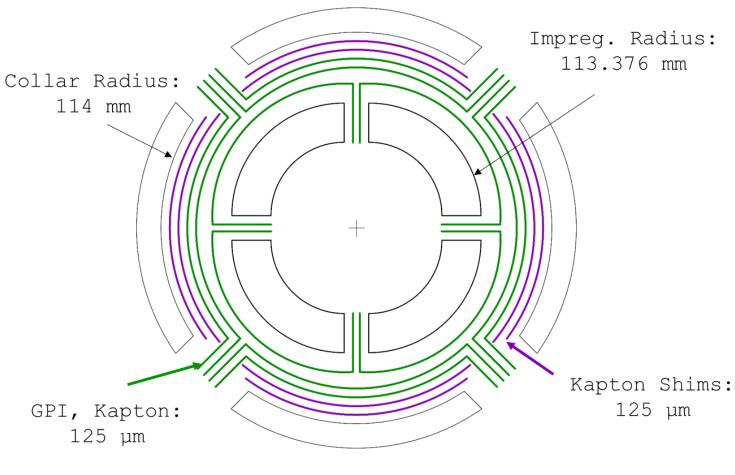
Axial support system

• SS rods and end-plates

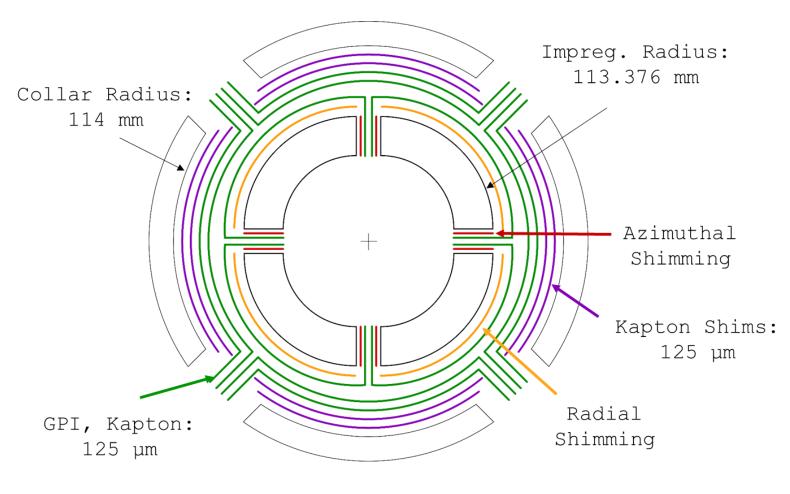
Paolo Ferracin

See J. C. Perez

Outline

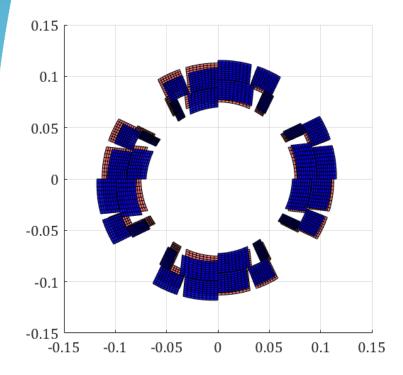

- Standard Shimming Layouts
- Coil Size Measurements
- Coil Pack Layouts Shimming Plan
- Coil pack results
- Extra:
 - Coil Positioning
 - MQXFS5 Fuji paper

Shimming Layouts

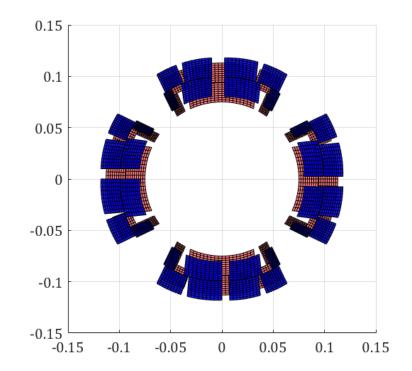

Nominal Shimming Layout

Total nominal radial shimming: 625 μm

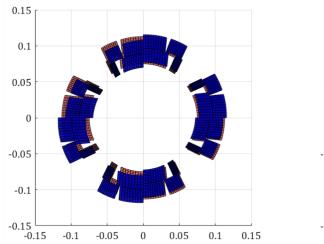
Shimming Options (1)

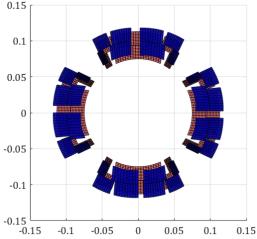


Total nominal radial shimming: 625 μm


10/01/2018

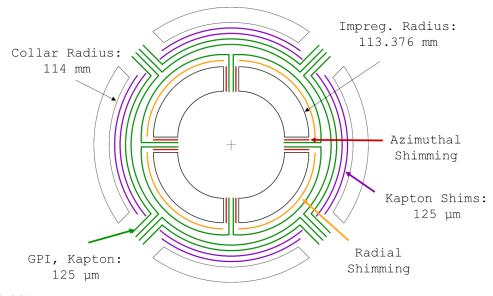
Shimming Options (2)


Radial Shimming



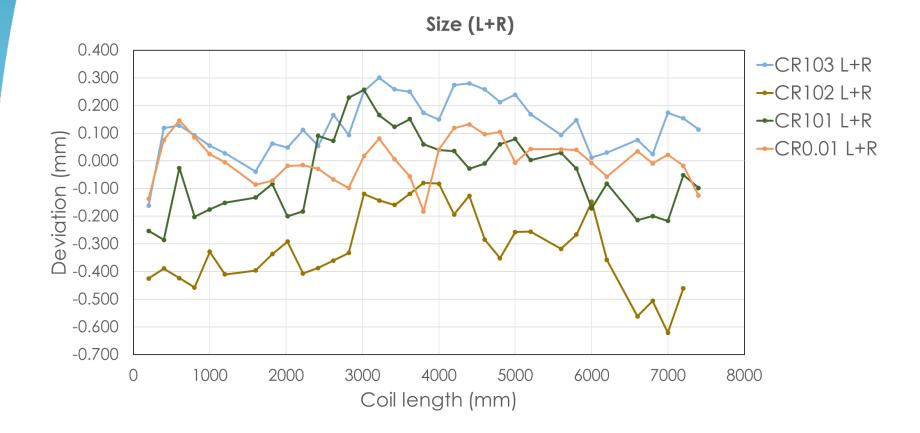
Mid-Plane Shimming

Shimming Strategy (1)

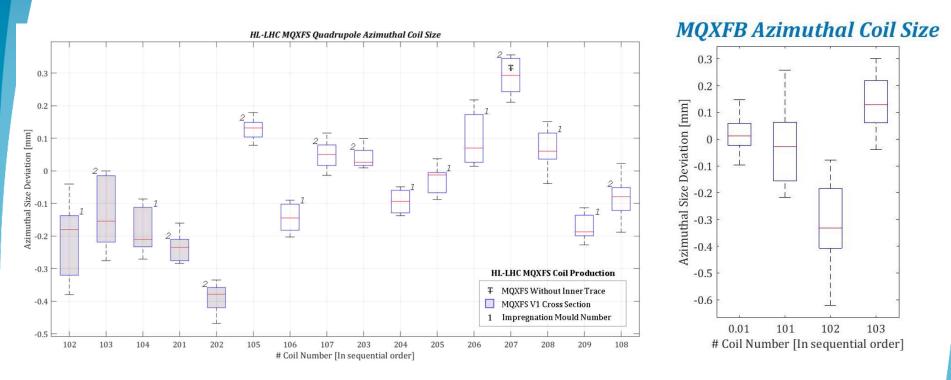


- Short models experience:
 - In MQXFS1we have used a mix of radial and mid-plane shimming
 - In MQXFSS3/S5 we have used only mid-plane shimming
- For FQ purposes is in general efficient to bring all the coils to the same inner radius (high field region...).
- As a consequence, we generally assume to shim using only on the mid-plane.

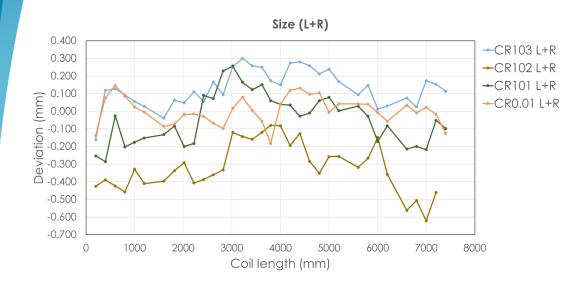
Shimming Strategy (2)


- Shimming algorithm:
 - 1. Establish coil positioning/order (FQ considerations, see extra slides)
 - 2. Identify the bigger coil
 - 3. Remove/add collar shims in order to match the bigger coil outer radius to the collar radius
 - 4. Shim all the other coils on the mid plane in order to get them to the same outer radius

Coil Size Measurements



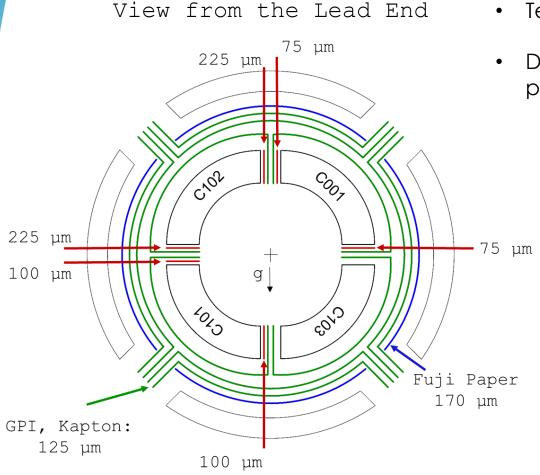
Coil Measurements (1)


Coil Measurements (2)

• MQXFB coils exhibit larger variations (up to now)

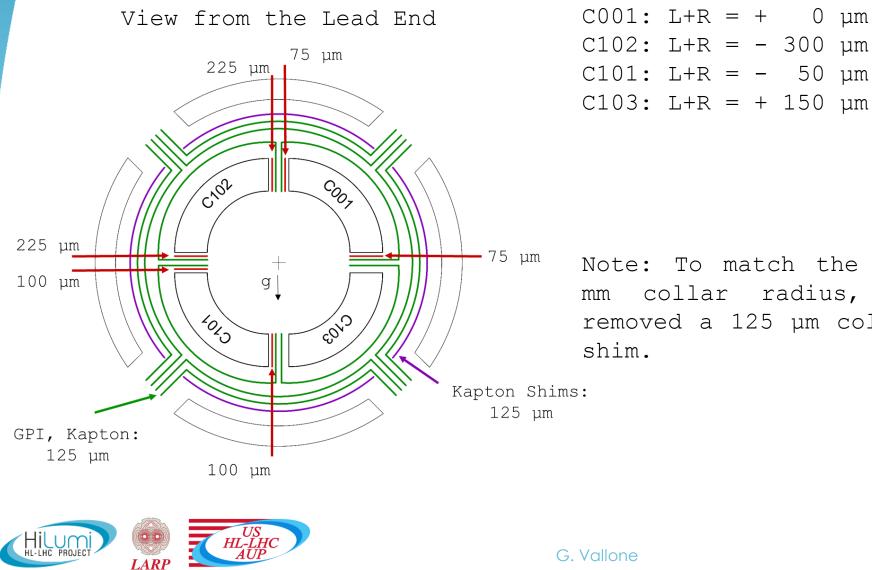
Coil Measurements (3)

Coil	L+R μm	
C0.01	12	
C101	-28	
C102	-314	
C103	138	
Ļ		
Coil	L+R	(L+R)/2
COII	μm	μm
C0.01	0	0
C101	-50	-25
C102	-300	-150
C103	150	75


- As the smaller shim that we are using is 25 $\mu m,$ we cannot correct less than 50 μm
- Why: if we shim on the mid plane we need two shims. On the azimuthal direction we need to apply $\frac{4}{2\pi}(L+R)$, with similar results.

Coil Pack Layouts

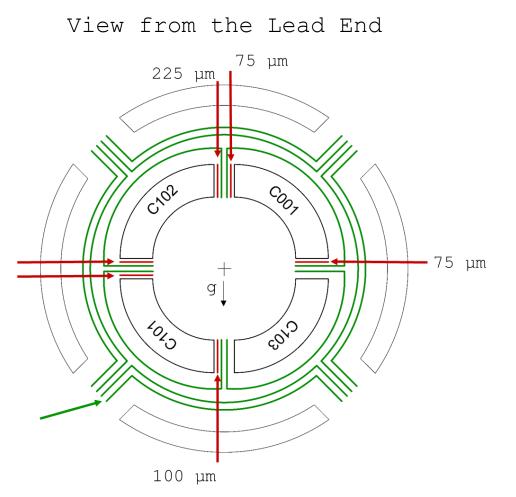
1st Coil Pack Layout – Fuji Test



- Test coil pack: fuji paper radially
- Do we want to test also the midplane contact?

C001:	L+R	=	+	0	μm
C102:	L+R	=	—	300	μm
C101:	L+R	=	_	50	μm
C103:	L+R	=	+	150	μm

Note: To match the 114 mm collar radius, we removed a 125 μm collar shim.


2nd Coil Pack Layout – Nominal

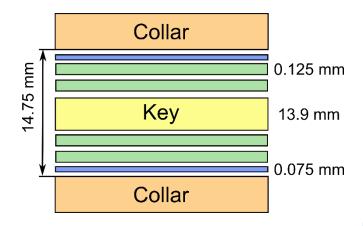
C102: L+R = $-300 \mu m$ C101: $L+R = -50 \mu m$ C103: L+R = + 150 µm

Note: To match the 114 mm collar radius, we removed a 125 µm collar

Coil Pack Layout – Reduced

C001:	L+R	=	+	0	μm
C102:	L+R	=	_	300	μm
C101:	L+R	=	_	50	μm
C103:	L+R	=	+	150	μm

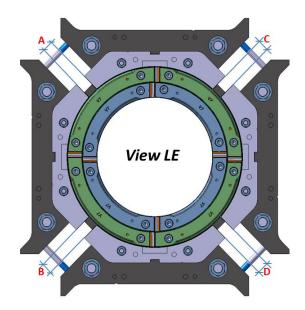
Note: To match the 114 mm collar radius, we removed a 125 µm collar shim.


Additional shim removed to improve contact.

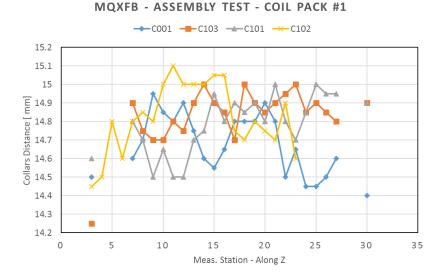

Pole Key Shimming - Example

- Average distance between collar sides has to be measured during coil pack 2. E.g. 14.75 mm
- Key thickness is 13.9 mm
- 0.2 mm removed to increase pole stress (e.g.)
- 0.5 mm of GPI Kapton wrapped on the collar sides
- Total shimming required computed as:

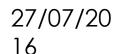
 $t_{shimming} = \Delta t_{collars} - t_{key} - t_{kapton} - 0.2$



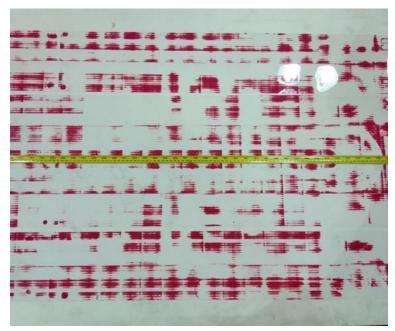
Coil Pack #1 Results



Gap Measurement

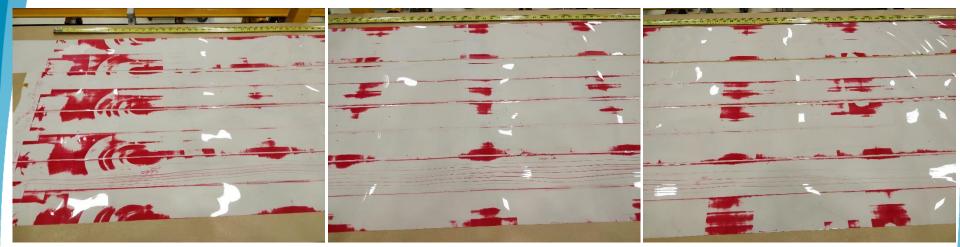


- Distance range: $\pm 300 \ \mu m$. Similar to what is usually seen on the short model
- No clear pattern (meas. seem ~randomly distributed) – to be verified
 - In the short models we usually see a pattern



Fuji Film - Introduction

MQXFAP2


- MQXFAP2 Fuji paper as a reference:
 - Coils were ~perfect in size
 - Bolting on tick laminations
 - Contact on pole and mid-plane
- This MQXFS3c paper shows ~no contact on the mid-plane

MQXF3c 27/07/20 16

Fuji Film (1)

225 μm 225 μm 225 μm 100 μm GPI, Kapton: 125 μm 100 μm 100 μm

C001: L+R = + 0 μ m C102: L+R = - 300 μ m C101: L+R = - 50 μ m C103: L+R = + 150 μ m

CR102T

CR001

CR103

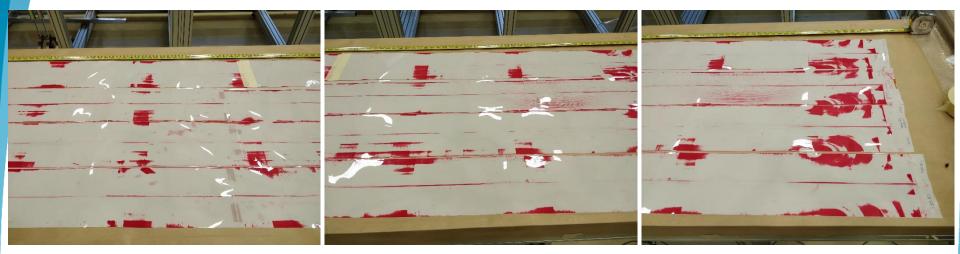
CR101

CR102B

27/07/20 16

Fuji Film (2)

75 µm CR102T 225 µm CR001 6102 С_{ОО,} 225 µm CR103 -75 μm a↑ + 100 µm 1013 60 CR101 Fuji Paper 170 µm GPI, Kapton: CR102B 125 µm 100 µm


C001: L+R = + 0 μ m C102: L+R = - 300 μ m C101: L+R = - 50 μ m C103: L+R = + 150 μ m

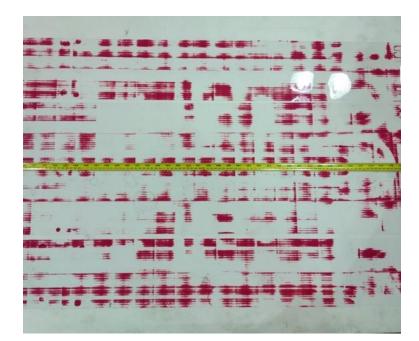
27/07/20 16

Fuji Film (3)

75 µm CR102T 225 µm CR001 102 225 µm CR103 -75 μm aT + 100 µm 1013 CR101 Fuji Paper 170 µm GPI, Kapton: CR102B 125 µm 100 µm

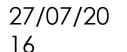
C001: L+R = + 0 μ m C102: L+R = - 300 μ m C101: L+R = - 50 μ m C103: L+R = + 150 μ m

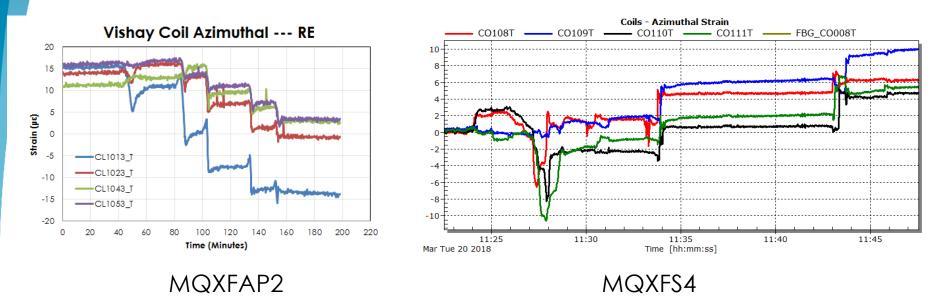
HILUMI HI-LHC PROJECT



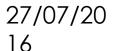
27/07/20 16

Fuji Film - Comments


MQXFBP1 Test - Coil Pack 1

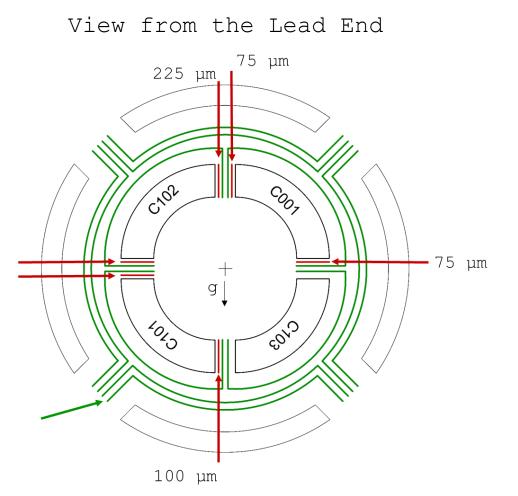

MQXFAP2

- In very few areas there is good contact on both pole and mid-plane
- In other zones we see no contact at all
- Can we improve this result with a different shimming plan?



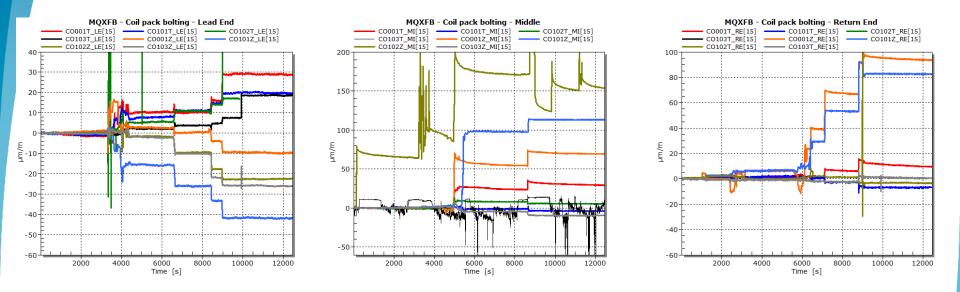
Strain Gauges - Introduction

- MQXFB Waiting for the data some sensors were swapped (azim./long.)
- In the meanwhile we can look at two reference cases:
 - MQXFAP2 compression everywhere \rightarrow contact on the pole
 - MQXFS4 tension everywhere \rightarrow more contact on the mid-plane



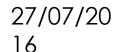
Coil Pack #2 Results

Coil Pack #2 - Layout

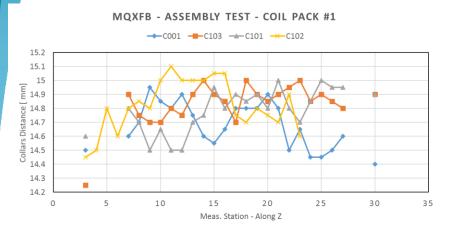

C001:	L+R	=	+	0	μm
C102:	L+R	=	_	300	μm
C101:	L+R	=	_	50	μm
C103:	L+R	=	+	150	μm

Note: To match the 114 mm collar radius, we removed a 125 µm collar shim.

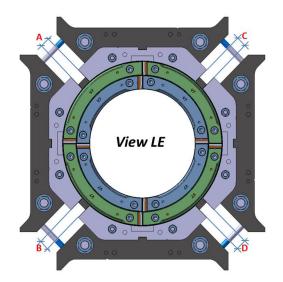
Additional shim removed to improve contact.



Coil Pack #2 - Strain Gauges

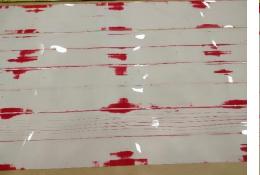

- Data is difficult to read, probably better to remove the noisy signals
- Philippe suggests that some signals seem still inverted. We will have to wait for the loading to be sure.
- In general, it seems that we have tension everywhere

Coil Pack #2 - Gap Measurement

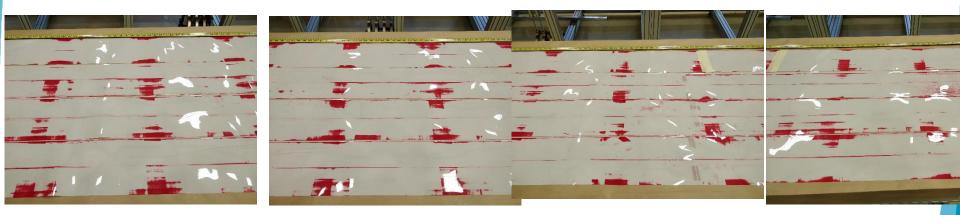

G. Vallone

MQXFB - ASSEMBLY TEST - COIL PACK #2 ← C001 ← C103 ← C101 ← C102 15 14.9 14.8 mm 14.7 ਲ 14.6 14.5 stan ö 14.4 14.4 14.3 14.2 14.1 14 0 5 10 15 20 25 30 35 Meas. Station - Along Z

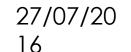
- Distance range for both coil packs: $\pm 300 \ \mu m$, consistent with the short models
- Coil pack 1 total gap: $400 \ \mu m$
- Coil pack 2 total gap: $100 \ \mu m$. Gap reduction expected as we removed radial shims
- Coil pack 2 is more uniform. This is probably due to the fact that with the reduced gap we are using the PK



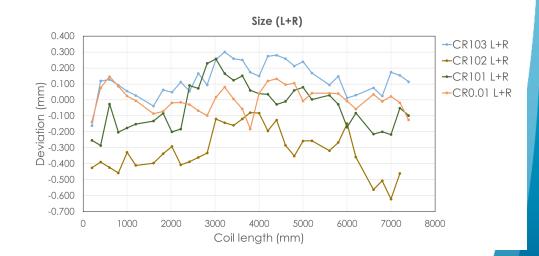
EXTRA



Fuji Film - All



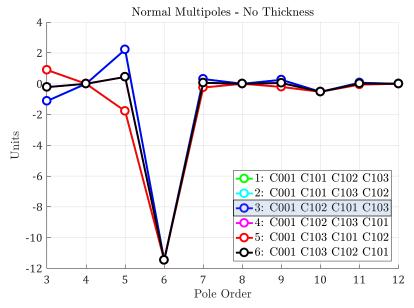
Coil Position

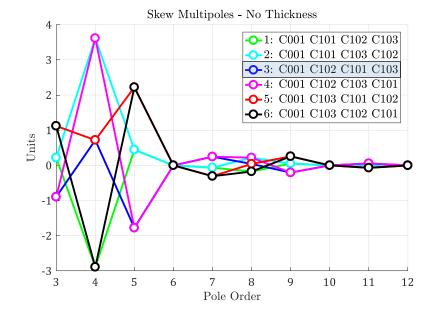

Coil Pack Layout (1)

- We have to decide the relative position between the coils. Assumptions:
 - Only mid-plane shimming (more effective for FQ)
 - Smallest shim is $25 \, \mu m$ (rounded coil size)
 - Thickness neglected
- Possible coil combinations:

1234	1243	1324
1342	1423	1432

	L+R	(L+R)/2	dshim	mid-shim
	μm	μm	μm	μm
C0.01	12	6	0	75
C101	-28	-14	-25	100
C102	-314	157	-150	225
C103	138	69	75	0

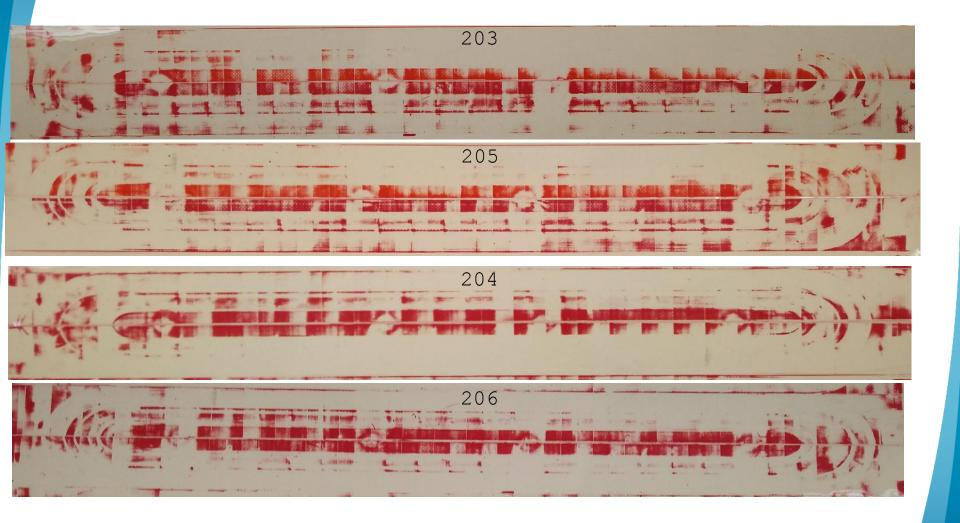

Coil Pack Layout (3)


Coil Positioning Case						Coil Positioning Case						
1	2	3	4	5	6	an	1	2	3	4	5	6
-1.12	0.90	-1.12	-0.22	0.90	-0.22	3	0.22	0.22	-0.90	-0.90	1.12	1.12
0.00	0.00	0.00	0.00	0.00	0.00	4	-2.89	3.61	0.72	3.61	0.72	-2.89
2.22	-1.78	2.22	0.44	-1.78	0.44	5	0.44	0.44	-1.78	-1.78	2.22	2.22
-11.46	-11.46	-11.46	-11.46	-11.46	-11.46	6	0.00	0.00	0.00	0.00	0.00	0.00
0.31	-0.25	0.31	0.06	-0.25	0.06	7	-0.06	-0.06	0.25	0.25	-0.31	-0.31
0.00	0.00	0.00	0.00	0.00	0.00	8	-0.18	0.22	0.04	0.22	0.04	-0.18
0.26	-0.20	0.26	0.05	-0.20	0.05	9	0.05	0.05	-0.20	-0.20	0.26	0.26
-0.52	-0.52	-0.52	-0.52	-0.52	-0.52	10	0.00	0.00	0.00	0.00	0.00	0.00
0.07	-0.06	0.07	0.01	-0.06	0.01	11	-0.01	-0.01	0.06	0.06	-0.07	-0.07
0.00	0.00	0.00	0.00	0.00	0.00	12	0.00	0.00	0.00	0.00	0.00	0.00
	0.00 2.22 -11.46 0.31 0.00 0.26 -0.52 0.07	$\begin{array}{ccc} 1 & 2 \\ -1.12 & 0.90 \\ 0.00 & 0.00 \\ 2.22 & -1.78 \\ -11.46 & -11.46 \\ 0.31 & -0.25 \\ 0.00 & 0.00 \\ 0.26 & -0.20 \\ -0.52 & -0.52 \\ 0.07 & -0.06 \end{array}$	$\begin{array}{cccc} 1 & 2 & 3 \\ -1.12 & 0.90 & -1.12 \\ 0.00 & 0.00 & 0.00 \\ 2.22 & -1.78 & 2.22 \\ -11.46 & -11.46 & -11.46 \\ 0.31 & -0.25 & 0.31 \\ 0.00 & 0.00 & 0.00 \\ 0.26 & -0.20 & 0.26 \\ -0.52 & -0.52 & -0.52 \\ 0.07 & -0.06 & 0.07 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	123456an123-1.120.90-1.12-0.220.90-0.2230.220.22-0.900.000.000.000.000.000.004-2.893.610.722.22-1.782.220.44-1.780.4450.440.44-1.78-11.46-11.46-11.46-11.46-11.4660.000.000.000.31-0.250.310.06-0.250.067-0.06-0.060.250.000.000.000.000.000.008-0.180.220.040.26-0.200.260.05-0.200.0590.050.05-0.20-0.52-0.52-0.52-0.52-0.52100.000.000.000.07-0.060.070.01-0.060.0111-0.01-0.01	1 2 3 4 5 6 an 1 2 3 4 -1.12 0.90 -1.12 -0.22 0.90 -0.22 3 0.22 0.22 -0.90 -0.90 0.00 0.00 0.00 0.00 0.00 4 -2.89 3.61 0.72 3.61 2.22 -1.78 2.22 0.44 -1.78 0.44 5 0.44 0.44 -1.78 -1.78 -11.46 -11.46 -11.46 -11.46 -11.46 6 0.00 0.00 0.00 0.31 -0.25 0.31 0.06 -0.25 0.06 7 -0.06 -0.06 0.25 0.25 0.00 0.00 0.00 0.00 0.00 8 -0.18 0.22 0.04 0.22 0.26 -0.20 0.26 0.05 -0.20 0.05 9 0.05 0.05 -0.20 -0.20 -0.52 -0.52 -0.52 -0.52 10 0.00 0.00 0.00 0.00 0.00 0.00	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

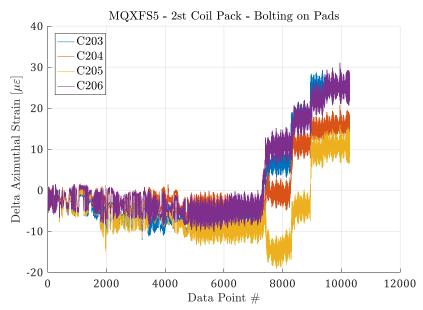
- Full results for reference
- Our models have shown in the past errors of the order of ~1 unit
 - In reality most of the results are comparable...

Coil Pack Layout (4)

- Consider only the harmonics with meaningful variations
- Discard 2, 4 to avoid a large a_4
- Either we get b_3 , b_5 or a_3 , a_5
- $a_4 \rightarrow sets 3/5$ could be the best


	Coil Positioning Case									
-	1	1 2 3 4 5								
b3	-1.12	0.9	-1.12	-0.22	0.9	-0.22				
b5	2.22	-1.78	2.22	0.44	-1.78	0.44				
a3	0.22	0.22	-0.9	-0.9	1.12	1.12				
a4	-2.89	3.61	0.72	3.61	0.72	-2.89				
a5	0.44	0.44	-1.78	-1.78	2.22	2.22				

MQXFS5 Fuji and Bolting



MQXFS5 - Fuji Paper: Coil/Collar

Bolting on Pads

• Tension on all the coils

