

New CLIC FFS design at 380 GeV CLIC Workshop 2019, CERN

Andrii Pastushenko, Rogelio Tomás

January 21, 2018

1 [CLIC 380 GeV, reduced](#page-2-0) β_y^*

- [Beam size matching](#page-2-0)
- **•** [Luminosity](#page-4-0)
- **•** [Energy bandwidth](#page-6-0)

² [Final Doublet optimization](#page-7-0)

- **[FD length reduction](#page-7-0)**
- **[Twiss matching](#page-9-0)**
- **[Chromaticity optimization](#page-13-0)**

3 [Summary and Conclusions](#page-15-0)

In the current design of CLIC 380 GeV:

- $L^* = 6$ m is chosen to easy MDI and avoid the need to shield QD0 (F.Plassard et al, "CLIC 3 TeV and 380 GeV BDS design with $L^* = 6$ m", CLIC workshop 2018).
- IP vertical beta function was reduced from 100 μ m to 70 μ m.

Nonlinear matching

- The beam size at the IP was matched to the linear value as much as possible using MadX-PTC and MAPCLASS.
- The obtained optics is then tested with PLACET.

Luminosity calculation

- The beam is tracked through the BDS with PLACET up to the IP.
- Beam distribution at the IP is used as an input for Guinea-Pig.

Beam-beam forces greatly affect the final luminosity - the highest luminosity is obtained off waist.

- Due to the pinch effect the beams are focused upstream of the IP.
- The waist location is scanned for larger luminosity

Total luminosity

- **• Energy bandwidth describes how the luminosity changes when the beam** has an energy offset.
- The beam energy offset was iterated in the range $\frac{\Delta p}{\rho} \in [-1\%, 1\%].$
- Obtained bandwidth is smaller for the new optics should be improved, to reach the previous level at least.

Peak luminosity

Total luminosity

Following the apertures calculated for the current design, the results of the pole tip field calculations showed that QF1 and QD0 are relatively weak.

Pole tip field along the BDS

Length of QF1 and QD0 can be optimized:

- **1** Shortening the magnets and increasing magnetic strength
- **3** Shifting the IP to retrieve $L^* = 6$ m.
- **3** Twiss matching
- **4** Adjusting the horizontal chromaticity to retrieve local correction scheme conditions

FD optimization

Each magnet is shortened by 3 m. IP is moved towards the FFS to have $L^* = 6$ m. QF1 may be shifted to balance the chromaticities. Sextupoles are to be moved later (the closer to the quads the better).

10 cm shift

The approach that I used was to fix QF1 position and try to change the upstream chromaticity by matching it to the desired value with MadX.

Natural chromaticity of a magnet is calculated as:

$$
\xi_x = k1L * \beta_x
$$

• The expected dependence of the beam size is:

$$
\sigma^*_y\sqrt{1+\xi_y^2\delta^2}
$$

- QF1 position was fixed.
- The Twiss parameters and upstream chromaticity were matched at the same time
- The 2nd order beam size was matched to the linear value.
- The smallest beam size calculated was 143.9 nm (target value is 143 nm).
- **•** From the fit, minimum is of around 143.6 nm.

Next step would be to shift QF1 closer to the IP to reduce the chromaticity and apply the same method.

Summary

- **O** Vertical IP beta function was reduced to 70 μ m. The optics was matched to mitigate the nonlinear contributions to the beam size.
- **2** New optics design was examined for luminosity and energy bandwidth. Luminosity is \sim 4% larger in the new design.
- **3 QF1** and QD0 were shortened by 3 m. The twiss parameters and 2nd order beam size were matched.

Conclusions

- Another position of QF1, which gives smaller chromaticity, should be examined and matched.
- New optics should optimized in terms of energy bandwidth.

Thank you very much for your attention!

Back up slides

Pole tip field for the magnets in the BDS is:

$$
B_{dipole} = \frac{1}{\rho} (B\rho) = \frac{1}{\rho} \frac{p}{e},
$$

$$
B_{quadrupole} = 3.333 p [GeV/c] k_1 p A,
$$

$$
B_{\text{sextuple}} = 3.333 p [GeV/c] k_2 \frac{A^2}{2},
$$

$$
B_{octupole} = 3.333p[GeV/c]k_3\frac{A^3}{6},
$$

where k_1 , k_2 and k_3 are the quadrupole, sextupole and octupole strengths respectively.

Geometrical luminosity depends on the beam size:

$$
\mathcal{L}_0 = \frac{N^2 f N_b}{4 \pi \sigma_x^* \sigma_y^*}.
$$

IP beam size dependence on the momentum offset is analyzed.

New optics

Nominal optics

Beam size dilution due to the chromaticity is:

$$
\sigma_y^* \sqrt{1 + \xi_y^2 \delta^2}.
$$

To retrieve the linear beam size, one has to generate the same natural chromaticity upstream of the FD to cancel chromaticity and 2nd order chromatic term.

The Hourglass effect - the bunch particles interact with each other with different transverse beam size which changes significantly within the bunch.

Luminosity reduction due to the Hourglass effect:

$$
\mathcal{L}=\mathcal{L}_0H_D=\mathcal{L}_0\sqrt{\frac{2}{\pi}}ae^{a^2}K_0(a^2),
$$

$$
a = \frac{\beta_y^*}{\sqrt{2}\sigma_z}; K_0 \text{ is modified Bessel function.}
$$

Beta function dependence on momentum offset

