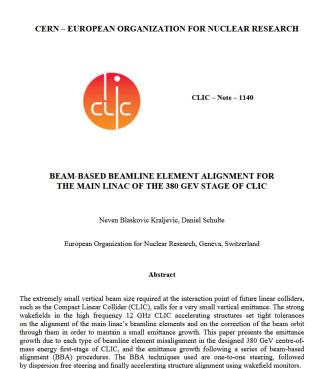


Beam-based alignment performance in the main linac

N. Blaskovic


Acknowledgements: D. Schulte

Contents

- 380 GeV CLIC's linac imperfections
- Beam-based alignment (BBA) techniques
- Emittance growths for each imperfection, after the different BBA corrections for:
 - Drive-beam-based design
 - Klystron-based design

CLIC Note

- Presentation based on <u>CLIC Note 1140</u>
- Please refer to CLIC Note for PLACET commands

Geneva, Switzerland 26 November 2018

N. Blaskovic

CLIC Workshop 2019

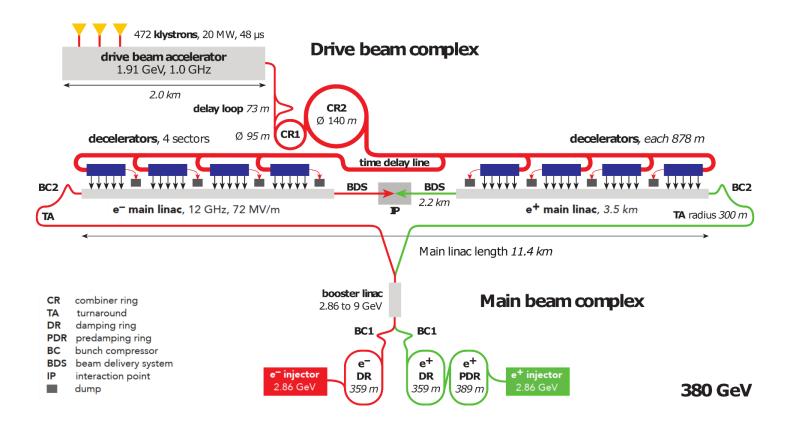
CERN-ACC-2018-0053 26/11/2018

Linac imperfections

- Main linac imperfections assumed from CLIC CDR for 3 TeV design
- Tolerances could be relaxed at 380 GeV since main linac is shorter
- However, this would require upgrading the systems for better performance when the energy is upgraded
- Target: vertical emittance growth of <5 nm with a 90% likelihood

Linac imperfections

Imperfection	With respect to	Value
BPM offset	Wire reference	$14 \ \mu m$
Cavity tilt	Girder axis	141 μ rad
BPM resolution		$0.1~\mu{ m m}$
Girder end point	Wire reference	$12~\mu{ m m}$
Girder end point	Articulation point	$5~\mu{ m m}$
Cavity offset	Girder axis	$14~\mu{ m m}$
Wake monitor	Structure centre	$3.5~\mu{ m m}$
Quadrupole roll	Longitudinal axis	100 μ rad

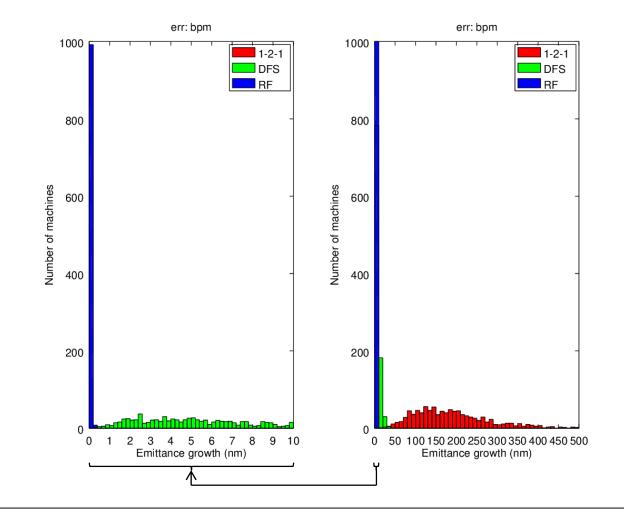

Beam-based alignment

- One-to-one steering (1-2-1):
 Move quad to centre beam in next BPM
- Dispersion free steering (DFS):
 - Use 2 beams of different energies
 - Move quads to centre beam in BPMs & minimise orbit difference between 2 beams
- RF realignment (RF):

 Move girders to minimise readings in accelerating structures' wakefield monitors

Main linac emittance growth

- Assume at the start of the main linac:
 - Vertical emittance: 10 nm
 - RMS fractional energy spread: 1.6%
- Compute emittance growth in the main linac for each imperfection (averaged over 1000 machines), after successive BBA techniques
- Consider first the drive-beam-based 380 GeV design for CLIC


from the CLIC Project Implementation Plan (2018)

N. Blaskovic

			Δ	$\Delta \epsilon_y \; [\mathrm{nm}]$		
Imperfection	With respect to	Value	1-2-1	DFS	RF	
BPM offset	Wire reference	$14~\mu{\rm m}$	188.99	7.12	0.06	

- DFS mitigates effect of BPM offsets as they are common to both energy beams
- RF realignment uses wakefield monitors, not BPM readings

BPM offset

N. Blaskovic

			$\Delta \epsilon_y \; [\mathrm{nm}]$		
Imperfection	With respect to	Value	1-2-1	DFS	RF
BPM offset Cavity tilt BPM resolution	Wire reference Girder axis	$\begin{array}{c} 14 \ \mu { m m} \\ 141 \ \mu { m rad} \\ 0.1 \ \mu { m m} \end{array}$	$\begin{array}{c} 188.99 \\ 0.12 \\ 0.01 \end{array}$	$ \begin{array}{c} 7.12 \\ 0.40 \\ 0.76 \end{array} $	$0.06 \\ 0.27 \\ 0.03$

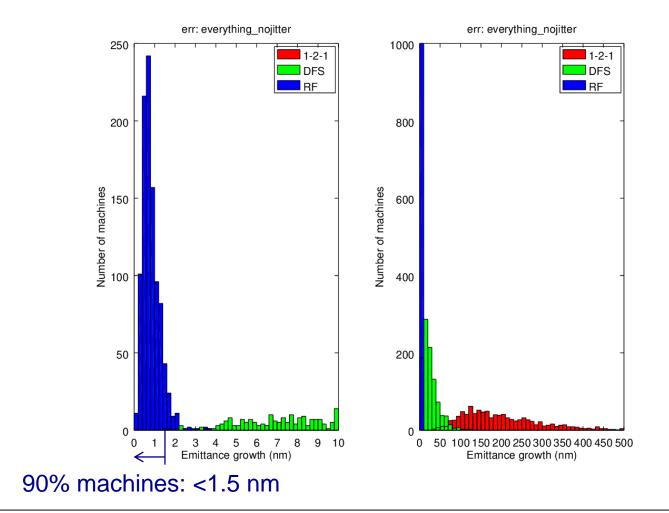
- Cavity tilts lead to beam kicks, different for 2 beams of different energies
- DFS is sensitive to BPM resolution as it finds difference in position of 2 beams

			$\Delta \epsilon_y \; [\mathrm{nm}]$		
Imperfection	With respect to	Value	1-2-1	DFS	RF
BPM offset	Wire reference	$14 \ \mu m$	188.99	7.12	0.06
Cavity tilt	Girder axis	141 μ rad	0.12	0.40	0.27
BPM resolution		$0.1~\mu{ m m}$	0.01	0.76	0.03
Girder end point	Wire reference	$12~\mu{ m m}$	12.91	12.81	0.07
Girder end point	Articulation point	$5~\mu{ m m}$	1.31	1.30	0.02
Cavity offset	Girder axis	$14 \ \mu m$	5.39	5.35	0.03

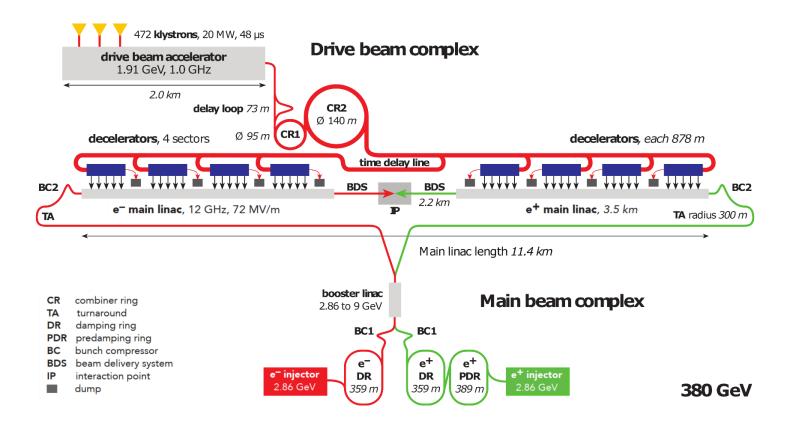
 RF realignment uses wakefield monitors mounted on cavities, so excellent to correct cavity offsets and girder offsets (as cavities are on girders)

			$\Delta \epsilon_y \; [\mathrm{nm}]$		
Imperfection	With respect to	Value	1-2-1	DFS	RF
BPM offset	Wire reference	$14 \ \mu m$	188.99	7.12	0.06
Cavity tilt	Girder axis	141 μ rad	0.12	0.40	0.27
BPM resolution		$0.1 \ \mu \mathrm{m}$	0.01	0.76	0.03
Girder end point	Wire reference	$12 \ \mu { m m}$	12.91	12.81	0.07
Girder end point	Articulation point	$5~\mu{ m m}$	1.31	1.30	0.02
Cavity offset	Girder axis	$14 \ \mu \mathrm{m}$	5.39	5.35	0.03
Wake monitor	Structure centre	$3.5~\mu{ m m}$	0.01	0.01	0.35

 RF realignment using wakefield monitors is sensitive to wake monitor alignment relative to cavity

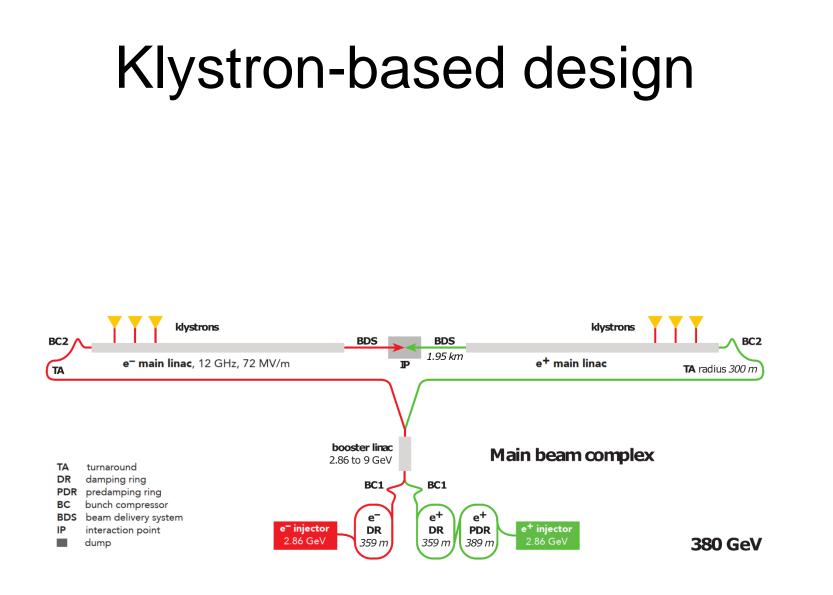

			$\Delta \epsilon_y \; [\mathrm{nm}]$		
Imperfection	With respect to	Value	1-2-1	DFS	RF
BPM offset	Wire reference	$14 \ \mu m$	188.99	7.12	0.06
Cavity tilt	Girder axis	141 μ rad	0.12	0.40	0.27
BPM resolution		$0.1 \ \mu \mathrm{m}$	0.01	0.76	0.03
Girder end point	Wire reference	$12 \ \mu m$	12.91	12.81	0.07
Girder end point	Articulation point	$5 \ \mu m$	1.31	1.30	0.02
Cavity offset	Girder axis	$14 \ \mu m$	5.39	5.35	0.03
Wake monitor	Structure centre	$3.5 \ \mu \mathrm{m}$	0.01	0.01	0.35
Quadrupole roll	Longitudinal axis	$100 \ \mu rad$	0.05	0.05	0.05

 x-y coupling is not targeted by these BBA techniques, as only vertical BBA is done


			$\Delta \epsilon_y \ [nm]$		
Imperfection	With respect to	Value	1-2-1	DFS	RF
BPM offset	Wire reference	$14~\mu{ m m}$	188.99	7.12	0.06
Cavity tilt	Girder axis	141 μ rad	0.12	0.40	0.27
BPM resolution		$0.1~\mu{ m m}$	0.01	0.76	0.03
Girder end point	Wire reference	$12~\mu{ m m}$	12.91	12.81	0.07
Girder end point	Articulation point	$5~\mu{ m m}$	1.31	1.30	0.02
Cavity offset	Girder axis	$14~\mu{ m m}$	5.39	5.35	0.03
Wake monitor	Structure centre	$3.5 \ \mu { m m}$	0.01	0.01	0.35
Quadrupole roll	Longitudinal axis	100 μ rad	0.05	0.05	0.05
All			204.53	25.88	0.83

Average overall emittance growth: < 1 nm

All imperfections



N. Blaskovic

from the CLIC Project Implementation Plan (2018)

N. Blaskovic

adapted from the CLIC Project Implementation Plan (2018)

N. Blaskovic

Klystron-based design

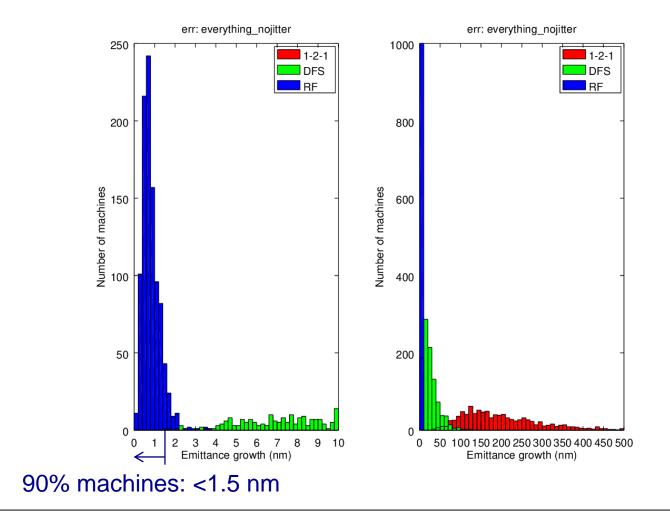
 Klystron-driven accelerating structures have smaller aperture, so larger wakefield

Parameter	Symbol	Drive Beam	Klystron
First iris radius / RF wavelength	a_1/λ	0.1625	0.145
Last iris radius / $\rm RF$ wavelength	a_2/λ	0.104	0.09

 Bunch charge & length reduced to compensate emittance growth

	Drive-beam-based	Klystron-based
Bunch charge $[10^9]$	5.2	3.87
Bunch length $[\mu m]$	70	60

from the CLIC Project Implementation Plan (2018)

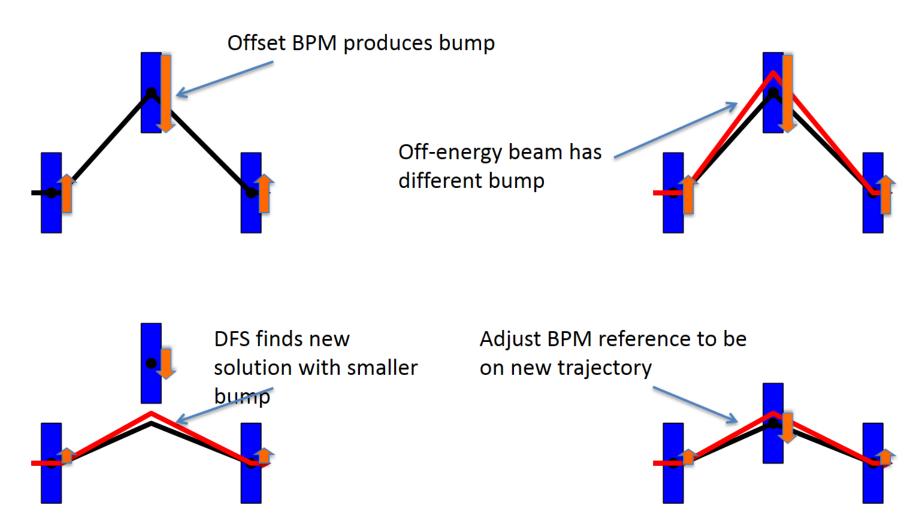

N. Blaskovic

Klystron-based design

			$\Delta \epsilon_y \; [\mathrm{nm}]$		
Imperfection	With respect to	Value	1-2-1	DFS	RF
BPM offset	Wire reference	$14 \ \mu { m m}$	154.54	14.01	0.10
Cavity tilt	Girder axis	141 μ rad	0.10	0.47	0.25
BPM resolution		$0.1~\mu{ m m}$	0.01	1.03	0.02
Girder end point	Wire reference	$12 \ \mu \mathrm{m}$	11.37	11.31	0.07
Girder end point	Articulation point	$5~\mu{ m m}$	1.45	1.45	0.02
Cavity offset	Girder axis	$14 \ \mu \mathrm{m}$	5.51	5.50	0.04
Wake monitor	Structure centre	$3.5 \ \mu \mathrm{m}$	0.01	0.01	0.40
Quadrupole roll	Longitudinal axis	100 $\mu {\rm rad}$	0.04	0.04	0.04
All			176.68	32.72	0.84

Average overall emittance growth: < 1 nm

All imperfections


N. Blaskovic

Conclusions

- For both drive-beam-based & klystronbased CLIC 380 GeV designs, emittance growth in main linac with all imperfections:
 - Average over 1000 machines: <1 nm</p>
 - 90% of machines: <1.5 nm
- Falls well within <5 nm budget for 90% machines

Thank you for your attention!

Dispersion Free Illustration

from Daniel Schulte at CERN Accelerator School (Zürich, 2018)

