CETD Experience with High Efficiency S-band Klystrons

CLIC Workshop 2019 Jan. 23, 2019 Toshiro ANNO

(C) Canon Electron Tubes & Devices Co., Ltd.

CANON ELECTRON TUBES & DEVICES CO., LTD.

Contents

- **1. Company Overview**
- **2. Principles of Klystrons**
- **3. Efficiency Enhancement of Klystrons**
- 4. Development of High Efficiency S-band Klystron Design and Test Results
- 5. Consideration
- 6. Summary

1. Company Overview

<u>History</u>

Founded: 1915 Developed the First X-ray tube to be produced in Japan. Established: 2003 Renamed: Nov. 2018 Canon Electron Tubes & Devices Co., Ltd.

Headquarters

1385 Shimoishigami Otawara, Tochigi Japan

Products

Microwave Tubes Power Grid Tubes Radiation Detectors X-ray Tubes Image Intensifier X-ray Flat Panel Detectors

2. Principles of Klystrons

Low Perveance

Perveance=I/V^{3/2}

The efficiency of low-perveance klystron is more than 70%. The MBK is a known solution to achieve high efficiency and high power.

Example of MBK

E37503 Klystron for CLIC Project

- Six-low perveance beams
- Perveance of 0.42 μ A/V $^{3/2}$ for lower cathode voltage with higher efficiency
- Six coaxial cavities in interaction section

Parameter	Design	Test result	
Frequency [MHz]	999	.516	
Peak power [MW]	20	20.5	
Pulse length [ms]	150	150	
Repetition rate [pps]	50	(25)	
Beam voltage [kV]	166	159.5	
Beam current [A]	170	180	
Efficiency [%]	71	71.5	
Power gain [dB]	50	53.9	

New Bunching Method

Classical Bunching

New bunching methods were proposed to increase the power efficiency of klystrons.

Rough Estimation by Simplified Model

B(I) : Deceleration factor due to finite length of bunch.

- ΔV_{beam} : Maximum potential spread in electron bunch.
 - : Beam voltage.

 V_k

 $G(r_d, r_b)$: Deceleration factor due to distribution of electric field in output cavity.

Y. Okubo (CETD), IPAC18

Rough Estimation by Simplified Model

Assuming cylindrical bunch,

Base Model: E3772A (2856MHz, 7.5MW)

E3772A Klystron for Medical Linac

	Parameter	Value	
	Frequency [MHz]	2856	80
-+	Peak power [MW]	7.5	
	Pulse length [µs]	4.5	
	Repetition rate [pps]	200	
	Beam voltage [kV]	155	
	Beam current [A]	109	20 • po [MW] 1 • po [MW]
	Micro perveance [µA/V ^{3/2}]	1.79	
	Efficiency [%]	45	100 110 120 130 140 150 160 Beam Voltage [kV]
Length: 1.0 m	Power gain [dB]	51	
weight: 40 kg	Solenoid coil power [kW]	3.7	

We applied the new bunching method to the high-perveance klystron.

Design Concept

1. Increase number of cavity in interaction section.

2. Keep body length same as original to use same electromagnet.

3. Use narrow drift tube for 2nd harmonic cavities.

Comparison of interaction section

Conventional design (E3772A)

5 cavities

High efficiency design

FCI Simulation

Conventional design (E3772A)

	output cavity				
~ ↑	accelerating phase	Parameter	E3772A design	High efficiency design	
				Target	Result
	7	Output power [MW]	7.5	>7.5	8.9
L	ligh officiency design	Frequency [MHz]	2856	2856	2856
	accelerating phase	Beam voltage [kV]	155	145	145
~		Perveance [μΑ/V ^{3/2}]	1.8	1.8	1.8
Ī		Drive power [W]	80	<160	130
	The second secon	Efficiency [%]	45	60	62
	→ 7				

The number of electrons in the accelerating phase was decreased.

FCI Simulation

Electrons were smoothly bunched by core-oscillation sections in the high efficiency design.

Pulse repetition rate [pps] 100 100 Drive power [W] 60 90 Power efficiency [%] 56.9 54.7 Power gain [dB] 50.5 49.0 Micro perveance [μA/V ^{3/2}] 1.76 1.73 Solenoid power [kW] 2.6 6.5	RF pulse width [μs]	4.5	4.5			
Drive power [W] 60 90 Power efficiency [%] 56.9 54.7 Power gain [dB] 50.5 49.0 Micro perveance [μA/V ^{3/2}] 1.76 1.73 Solenoid power [kW] 2.6 6.5	Pulse repetition rate [pps]	100	100	tput		• #1 Cond.1 po[MW]
Power efficiency [%] 56.9 54.7 Power gain [dB] 50.5 49.0 Micro perveance [μA/V ^{3/2}] 1.76 1.73 Solenoid power [kW] 2.6 6.5	Drive power [W]	60	90	o 4		• #1_Cond.2_po[MW] 20
Power gain [dB] 50.5 49.0	Power efficiency [%]	56.9	54.7	2	Output power	#1_Cond.1_Eff.[%] 10
Micro perveance [μA/V ^{3/2}] 1.76 1.73 100 120 140 160 Solenoid power [kW] 2.6 6.5 Beam Voltage [kV]	Power gain [dB]	50.5	49.0	0		■ E3772A_Eff.[%] 0
Solenoid power [kW] 2.6 6.5 Beam Voltage [kV]	Micro perveance [μΑ/V ^{3/2}]	1.76	1.73	100	120	140 160
	Solenoid power [kW]	2.6	6.5	Beam Voltage [kV]		

Comparison of FCI and KlyC

KlyC was developed by J.C. Cai and I. Syratchev (CERN).

Simulation result

Parameter	FCI	KlyC
Output power [MW]	8.4	8.3
Drive power [W]	100	140
Efficiency [%]	60.7	60.3
Beam voltage [kV]	144.8	
Beam current [A]	95.2	

KlyC config.

Layer Number: 10 Space Charge Field Order: 10 Division Number in RF: 128 Iteration Residual Limit: 0.0001 Iteration Relaxation: 0.3

<u>FCI config.</u>

Number of mesh: 15 x 300 Focusing coil current: #1 tube, cond.2

#2: Collector length and cavity frequencies were modified from #1.

- 59.2% efficiency at 7.3 MW output power was achieved.
- Further adjustment of solenoid coil current will increase efficiency.

5. Consideration

Efficiency estimation of other tubes (simulation)

6. Summary

- Power efficiency of high-perveance klystron was increased by 14% and efficiency of 59.2% was achieved by new bunching design.
- Instabilities were found when beam voltage was increased.
 Adjustment of solenoid current suppressed instabilities.
- Application of new design to scientific and industrial klystrons to reduce power consumptions or increase output power are expected.

CETD started the collaboration with CERN in the high-efficiency X-band klystron development.

