

CLICWEEK201 Compact Linear Collider Workshop January 21 - 25, 2019 @ CERN

Accelerator technology, high-gradient structures, and low-emittance beams

 Advanced radio frequency technologies: high-efficiency klystrons, pulse compressors, components, and accelerating structures

- Low emittance beams: beam dynamics, damping rings, beam delivery, instrumentation, alignment, stabilization
- Staged approach: from a 380 GeV Higgs/top factory to TeV energies

e[†]collisions at the energy frontier!

Detector technology and software

- Detector R&D: new prototype designs, simulation studies, and test-beam results for tracking detectors and calorimeters
- Software for detector geometry, simulation and reconstruction (DD4hep)
- Tracking and particle flow reconstruction
- Distributed data management and computing (iLCDirac)

Precision physics: Higgs, top, and BSM

- CLIC potential for precision measurements of the Higgs boson and top-quark properties, and the flavour sector
- Global interpretation using Standard Model effective field theory
- Signatures for direct discovery at CLIC, complementarity with indirect probes and hadron colliders

Learn more about CLIC here 回惑

clicw2019.web.cern.ch

The CLIC accelerator studies

The CLIC workshop 2019

Steinar Stapnes on behalf of the CLIC accelerator collaboration

Collaborations http://clic.cern/

CLIC accelerator collaboration 53 institutes from 31 countries

CLIC detector and physics (CLICdp) 30 institutes from 18 countries

For CLICdp see the following talks

CLIC input to the European Strategy for Particle Physics Update 2018-2020

Formal European Strategy submissions

CERN

- The Compact Linear e+e- Collider (CLIC): Accelerator and Detector (arXiv:1812.07987)
- The Compact Linear e+e- Collider (CLIC): Physics Potential (arXiv:1812.07986)

Yellow Reports

- CLIC 2018 Summary Report (CERN-2018-005-M, arXiv:1812.06018)
- CLIC Project Implementation Plan (CERN-2018-010-M)
- The CLIC potential for new physics (CERN-2018-009-M)
- Detector technologies for CLIC [In collaboration review]

Journal publications

- Top-quark physics at the CLIC electron-positron linear collider [In journal review] (arXiv:1807.02441)
- Higgs physics at the CLIC electron-positron linear collider (Journal, arXiv:1608.07538)
 - Projections based on the analyses from this paper scaled to the latest assumptions on integrated luminosities can be found here: CDS, arXiv.

CLICdp notes

- Updated CLIC luminosity staging baseline and Higgs coupling prospects (CERN Document Server, arXiv:1812.01644)
- CLICdet: The post-CDR CLIC detector model (CERN Document Server)
- A detector for CLIC: main parameters and performance (CERN Document Server, arXiv:1812.07337)

Link: http://clic.cern/european-strategy

380 GeV klystron option

Replace drive-beam complex by local X-band RF power in tunnel Larger tunnel, simpler module

Pulse compressor

Accelerating structures

Assembled X-band

systems in continues operation at CERN

(b)

CLIC layout – 3TeV

CLIC parameters

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	$f_{\rm rep}$	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$ au_{ m RF}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Total integrated luminosity per year	$\mathscr{L}_{\mathrm{int}}$	fb^{-1}	180	444	708
Main linac tunnel length		km	11.4	29.0	50.1
Number of particles per bunch	Ν	10^{9}	5.2	3.7	3.7
Bunch length	σ_z	μm	70	44	44
IP beam size	σ_x/σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$
Normalised emittance (end of linac)	ϵ_x/ϵ_y	nm	900/20	660/20	660/20
Final RMS energy spread	-	%	0.35	0.35	0.35
Crossing angle (at IP)		mrad	16.5	20	20

CLIC main achievements

Key technologies have been demonstrated CLIC is now a mature project ready for implementation

Updated CLIC Staging

Stage	\sqrt{s} [TeV]	$\mathscr{L}_{int} [ab^{-1}]$	increased from
1	0.38 (and 0.35)	1.0	0.5+0.1ab ⁻¹
2	1.5	2.5	1.5ab ⁻¹
3	3.0	5.0	3ab⁻¹

Electron polarisation enhances Higgs production at high-energy stages and provides additional observables

Baseline polarisation scenario adopted: electron beam (–80%, +80%) polarised in ratio (50:50) at \sqrt{s} =380GeV ; (80:20) at \sqrt{s} =1.5 and

3TeV

Staging and live-time assumptions following guidelines consistent with other future projects: Machine Parameters and Projected Luminosity Performance of Proposed Future Colliders at CERN arXiv:1810.13022, Bordry et al.

Steinar Stapnes

Four challenges:

High-current drive beam bunched at 12 GHz

Power transfer + main-beam acceleration ~100 MV/m gradient in main-beam cavities Alignment & stability

Accelerator challenges

0

-5

-10

-15

-20

-25

urrent signa

Drive beam quality: Produced high-current drive beam bunched at 12GHz

CR.STBPM0155S ra 🛛 3 GHz Drive beam arrival time stabilised to CLIC x3 12_04_14:57:25zef specification of 50fs 28A 12 GHz 2015 12 10 14:50:27 ref 5000 5200 5400 5600 5800 6000 6200 6400 6600 Current in combiner ring 80 PFF Off PFF On Examples of measurements from CLIC 60 No. Pulses Test Facility, CTF3, at CERN. 40 CTF3 now the 'CFRN Linear Electron 20

> 0 -3

-2

-1

0

Phase [degrees]

2

3

Accelerator for Research' facility, CLEAR

Demonstrated 2-beam acceleration

31MeV = 145MV/m

Four challenges:

High-current drive beam bunched at 12 GHz Power transfer + main-beam acceleration ~100 MV/m gradient in main-beam cavities Alignment & stability

Four challenges:

High-current drive beam bunched at 12 GHz Power transfer + main-beam acceleration ~100 MV/m gradient in

Alignment & stability

X-band performance: achieved 100MV/m gradient in main-beam RF cavities

Unloaded Accelerating Gradient [MV/m]

Four challenges:

High-current drive beam bunched at 12 GHz Power transfer + main-beam acceleration

~100 MV/m gradient in main-beam cavities

Alignment & stability

The CLIC strategy for nano-beams:

- Align components (10µm over 200m)
- Control/damp vibrations (from ground to accelerator)
- Measure beams well

 allow to steer beam and optimize positions
- Algorithms for measurements, beam and component optimization, feedbacks
- Tests in small accelerators of equipment and algorithms (FACET at Stanford, ATF2 at KEK, CTF3, Light-sources)

Four challenges:

~100 MV/m gradient in main-beam cavities

Alignment & stability

The CLIC strategy for nano-beams:

- Align components (10µm over 200m)
- Control/damp vibrations (from ground to accelerator)
- Measure beams well

 allow to steer beam and optimize positions
- Algorithms for measurements, beam and component optimization, feedbacks
- Tests in small accelerators of equipment and algorithms (FACET at Stanford, ATF2 at KEK, FF3, Light-sources)

CLIC WS 2019

Industrialisation

Investigating paths to industrialisation

Baseline manufacturing technique: bonding and brazing

Alternatives:

brazing as for SwissFEL also for disks machining halves

Target is structures that are low-cost & easy-to-manufacture & shorten conditioning time

X-band technology base

- X-band activities and studies in institutes and industry (intensity linked to resources, publications ...)
- Similar maps possible to draw for Asian and US activities (and for other technologies than X-band)
- X-band used as part of machines (linearizers, deflectors) or as main RF

SwissFEL – C-band linac

- Similar µm-level tolerances
- Length ~ 800 CLIC structures
- Being commissioned

Technical developments - I

Sources and Injectors

Technical developments - II

Pulse Compression System for the Klystron-Based Option

Klystrons and Modulators

PETS and Accelerating Structures

CLIC WS 2019

Technical developments - III

Multi-pass interferometer

Beam Instrumentation

Survey and Alignment Ground Motion Stabilisation

Normal Conducting Electro-Magnets and Permanent Magnets

Technical developments - IV

Super-Conducting Damping Wiggler Vacuum Beam transfer Controls Fine Time Generation and Distribution Machine Protection Beam Interception Devices

Civil Engineering and Infrastructure Studies

Important effort within:

- Civil engineering
- Electrical systems
- Cooling and ventilation
- Transport, logistics and installation
- Safety, access and radiation protection systems

Crucial for cost/power/schedule

Power estimate bottom up (concentrating on 380 GeV systems)

• Very large reductions since CDR, better estimates of nominal settings, much more optimised drivebeam complex and more efficient klystrons, injectors more optimisation, etc

Further savings possible, main target damping ring RF Will look also more closely at 1.5 and 3 TeV numbers next

Steinar Stapnes

Running [MW] Collision Energy [GeV] Standby [MW] Off [MW] 380168259 381315003643000 5891746

From running model and power estimates at various states – the energy consumption can be estimated

CERN is currently consuming ~1.2 TWh yearly (~90% in accelerators)

 \sim

Machine has been re-costed bottom-up in 2017-18

- Methods and costings validated at review on 7 November – similar to LHC, ILC, CLIC CDR
- Technical uncertainty and commercial uncertainty estimated

Domoin	Sub Domoin	Cost [MCHF]		
Domain	Sub-Domain	Drive-Beam	Klystron	
	Injectors	175	175	
Main Beam Production	Damping Rings	309	309	
	Beam Transport	409	409	
Drive Beam Production	Injectors	584		
	Frequency Multiplication	379		
	Beam Transport	76		
	Main Linac Modules	1329	895	
Main Linac Modules	Post decelerators	37		
Main Linac RF	Main Linac Xband RF		2788	
Beem Delivery and	Beam Delivery Systems	52	52	
Post Collision Lines	Final focus, Exp. Area	22	22	
	Post-collision lines/dumps	47	47	
Civil Engineering	Civil Engineering	1300	1479	
	Electrical distribution	243	243	
Infrastructure and Somices	Survey and Alignment	194	147	
Infrastructure and Services	Cooling and ventilation	443	410	
	Transport / installation	38	36	
Machine Control, Protection and Safety systems	Safety system	72	114	
	Machine Control Infrastructure	146	131	
	Machine Protection	14	8	
	Access Safety & Control System	23	23	
Total (rounded)		5890	7290	

CLIC 380 GeV Drive-Beam based: 5890^{+1470}_{-1270} MCHF;

CLIC 380 GeV Klystron based:

 7290^{+1800}_{-1540} MCHF.

Other cost estimates:

Construction:

- From 380 GeV to 1.5 TeV, add 5.1 BCHF (drive-beam RF upgrade and lengthening of ML)
- From 1.5 TeV to 3 TeV, add 7.3 BCHF (second drive-beam complex and lengthening of ML)
- Labour estimate: ~11500 FTE for the 380 GeV construction

Operation:

- 116 MCHF (see assumptions in box below)
- Energy costs

- 1% for accelerator hardware parts (e.g. modules).
- 3% for the RF systems, taking the limited lifetime of these parts into account.
- 5% for cooling, ventilation and electrical infrastructures etc. (includes contract labour and consumables)

These replacement/operation costs represent $116 \,\mathrm{MCHF}$ per year.

Schedule

Updated schedule:

Construction + commissioning for 380 GeV: 7 yr Full physics programme 27 yr

CLIC WS 2019

Steinar Stapnes

		Activities	Purpose			
		Novt phace		Design and parameters		
inext phase		Beam dynamics studies, parameter optimisa-	Luminosity performance and reduction of risk,			
		-		tion, cost, power, system verifications in linacs and low emittance rings	cost and power	
	2013 – 2019	2013 - 2019 2020 - 2025 2026 - 2034		Main Linac modules		
	Development Phase	Preparation Phase	Construction Phase	Construction of 10 prototype modules in quali-	Final technical design, qualification of industrial	
	staged CLIC implementation in line	parameters, preparation for	accelerator stage compatible with	fied industries, Two-Beam and klystron versions,	partners, production models, performance veri-	
	developments with industry,	and system optimisation studies,	construction of the experiment;	optimised design of the modules with their sup-	fication	
	performance studies for accelerator parts and systems, detector	experiment, site authorisation	nardware commissioning	porting infrastructure in the Main-Linac tunnel		
technology demonstrators		Accelerating structures				
				Production of ~ 50 accelerating structures, in-	Industrialisation, manufacturing and cost opti-	
				cluding structures for the modules above	misation, conditioning studies in test-stands	
	•	•	•	Operating A-band test-stand	is, high efficiency RF studies	
	2020	2026	2035	Operation of X-band RF test-stands at CERN	Building experience and capacity for X-band	
	Update of the European	Ready for construction	First collisions	and in collaborating institutes for structure and	components and structure testing, validation	
	Strategy for Particle Physic	3		component optimisation, further development of	and optimisation of these components, cost re-	
				cost-optimised high efficiency klystrons	duction and increased industrial availability of	
					high efficiency RF units	

Other technical components

Magnets, instrumentation, alignment, stability, vacuum

Luminosity performance, costs and power, industrialisation

Drive beam studies

Drive beam front end optimisation and system Verification of the most critical parts of the drive tests to $\sim 20 \,\mathrm{MeV}$

beam concept, further development of industrial capabilities for L-band RF systems

Civil Engineering, siting, infrastructure

Detailed site specific technical designs, site preparation, environmental impact study and corresponding procedures in preparation for construction

Preparation for civil engineering works, obtaining all needed permits, preparation of technical documentation, tenders and commercial documents

CLIC WS 2019

Looong term future - NAT

- Working group for use of Novel Acceleration Technologies (NAT) plasma with various drivers, dielectrics, etc (short chapter in Project Implementation Plan document)
 - Physics and accelerator parameters (luminosity in particular)
 - Consider status of various studies
 - Key challenges beam-quality, positrons, energy efficiency for suitable luminosities
- Possible re-use of tunnel/infrastructure/drive-beams/injectors etc interesting for a LC infrastructure
- The fact the actual effective ML might remain short (and hence possibly "cheap" and inter-changeable in a limited time) makes this long term perspective worth considering
- Have not found any "constrains/guidance" from these very long term "hopes" that would impact the design of CLIC stages 1-3
 - CLIC is laser-straight and with a "reasonable" crossing angle likely to compatible with higher beam energies and the bunch separations needed for these technologies

- CLIC is now a mature project, ready for implementation
- The main accelerator technologies have been demonstrated
- The cost and implementation time are similar to LHC
- The physics case is broad and profound (see next talks)
- The detector concept and detector technologies R&D are advanced (also next talks)
- The full project status has been presented in a series of Yellow Reports and other publications: <u>http://clic.cern/european-strategy</u>

Thanks to all providing material - and more generally ALL contributors to the CLIC project implementation plan documents, from which this material is drawn