

The CLIC detector and physics study An Overview

Simon Spannagel, CERN on behalf of the CLICdp Collaboration

> CLIC Workshop CERN, 21 – 25 January 2019

The CLIC detector and physics Collaboration

CERN

Collaboration with

- 30 institutes
- 159 members

formed to carry out

- physics studies
- detector technology R&D

Close collaboration with other R&D / LC projects such as CALICE, FCAL as well as AIDA-2020 and LHC experiments

Outline

- CLIC Physics Program
- Experimental Conditions
- The CLIC detector concept CLICdet
- Detector Technologies & Prototypes
- Performance Studies & Validation
- Summary Documents

CLIC Physics Program

Standard Model & beyond

S. Spannagel - CLIC Week 2019 - The CLIC detector and physics study

1.1

CLIC Physics Program – in 3 Stages

- Dedicated CLICdp Physics session in this workshop (Wed. & Thur.)
- Talk by F. Riva in this session:

"Precision Physics and motivations for a high energy LC"

CERN

Stage 1: √s = 380 GeV (1.0 ab⁻¹)

- Higgs/top precision physics
- Top mass threshold scan

Stage 2: √s = 1.5 TeV (2.5 ab⁻¹)

- Focus: BSM searches
- Higgs/top precision physics

Stage 3: √s = 3 TeV (5.0 ab⁻¹)

- Focus: BSM searches
- Higgs/top precision physics

Higgs Physics

- Initial stage: study of Higgs boson production in
 - Higgsstrahlung ($e^+e^- \rightarrow ZH$)
 - WW-fusion ($e^+e^- \rightarrow H v_e v_e$)
 - Precise measurements of cross sections, decay width Γ_H, couplings (model-independent)
- High-energy stages:
 - High-statistics WW-fusion samples constrain Higgs couplings
 - Studies of rarer processes (e⁺e⁻ → ttH, e⁺e⁻ → HH v_ev_e) to measure top Yukawa coupling,
 - CLIC only proposed lepton collider for direct meas. of Higgs self-coupling
 - Talk on Higgs boson self-coupling by U. Schnoor
- Detailed paper published:

"Higgs physics at the CLIC electron-positron linear collider"

Top-Quark Physics

- Initial stage: focus on •
 - top-quark pair production •
 - tt pair production threshold scan at 350 GeV
 - Precise measurement of top-quark mass in • well-defined theoretical framework
- Higher-energy stages:
 - her-energy stages: top-quark pairs in association with other particles
 - ttH production, top Yukawa coupling •
 - Vector boson fusion (VBF) production
 - Combine measurements in global fits
- **Detailed paper in journal review:**

"Top-Quark Physics at the CLIC Electron-Positron Linear Collider"

√s [GeV]

Beyond-Standard-Model Physics

- Indirect searches through precision observables
 - Allow discovery of new physics beyond the center-of-mass energy of the collider
- Direct production of new particles
 - Possible up to the kinematic limit
 - Precision measurements
 - Complements the HL-LHC program
- EFT fits combining measurements, talk by F. Riva

• **Comprehensive report published:** "The CLIC Potential for New Physics"

Experimental Conditions

- CLIC operates in bunch trains, repetition rate of 50 Hz
 - Low duty cycle
 - Possibility for power pulsing:
 switch detector components off between trains to reduce heat dissipation
- 312 bunches within train (at 3 TeV), separated by 0.5 ns
- Bunch separation & cross-section of background events drive timing requirements for detector
 - 1 ns time resolution for calorimeters
 - 5 ns single-hit resolution for vertex/tracking detectors

Beam-induced Backgrounds

- High luminosity achieved by extremely small beam
 - Bunch size at 3 TeV CLIC: **40 nm** (x) x **1 nm** (y) x **44 μm** (z)
 - Resulting high e-field leads to beam-beam interactions
- Generates background particles, reduces \sqrt{s}

Main backgrounds in detector acceptance:

- Incoherent e + e pairs
 - 19k particles / bunch train at 3 TeV
 - High occupancies, stringent requirements on granularity

e⁺e⁻ Pairs

Beamstrahlung

 γ/γ

23/01/2019

• γγ → hadrons

- 17k particles / bunch train at 3 TeV
- Impact on detector granularity, layout, physics

S. Spannagel - CLIC Week 2019 - The CLIC detector and physics study

Integrated Luminosity

- Updated projections for luminosity
 - Harmonized with other future collider projects
 - Based on 185 days of physics operation per year
 - Luminosity ramp-up at beginning of each stage
- ±80% longitudinal polarization for the electron beam
- Total integrated luminosities:
 - Stage 1, 380 GeV: 1.0 ab⁻¹ (including tt threshold scan around 350 GeV)
 - Stage 2, 1.5 TeV: 2.5 ab⁻¹
 - Stage 3, 3 TeV: 5.0 ab⁻¹
- Document published:

"Updated CLIC luminosity staging baseline and Higgs coupling prospects"

CLICdet the CLIC detector Concept

23/01/2019

S. Spannagel - CLIC Week 2019 - The CLIC detector and physics study

CLICdet – the CLIC detector Concept

- Low-mass all-silicon vertex and tracking detectors, R = 1.5 m
- High-granularity calorimeters:
 - ECAL: 22 X₀ + 1 λ_l
 40 layers Si sensors, W plates
 - HCAL: 7.5 λ_l
 60 layers plastic scintillator/SiPM, steel
- 4T superconducting solenoid
- Return yoke, Muon detectors interleaved
- Optimized for Particle Flow Analysis

Detector requirements

- Momentum resolution
 - Higgs recoil mass, Higgs coupling to muons
 - σ_{pT}/p_T ~ 2 × 10⁻⁵ GeV⁻¹ above 100 GeV
- Impact parameter resolution
 - c/b-tagging, Higgs branching ratios
 - $\sigma_{r\phi} \sim a \oplus b / (p[GeV] \sin^{3/2} \theta) \mu m$ with $a = 5 \mu m, b = 15 \mu m$
- Jet energy resolution
 - Separation of W/Z/H di-jets
 - σ_E/E ~ 5% 3.5% for jets at 50 GeV 1000 GeV
- Angular coverage
 - Very forward electron and photon tagging
 - Down to $\theta = 10 \text{ mrad} (\eta = 5.3)$

Occupancies

- Charged particles produced • by beam-induced background
- Detector layout and granularity dependent on particle flux •
 - Talk by D. Arominski: "Updates on beam-induced backgrounds"
- Goal: keep occupancies below 3% per bunch train including safety factors •

E 60

30

20

10

ſ 50 40

vertex detector

beam pipe

100

150

50

- **Occupancy limits:** •
 - Vertex: pitch **25 µm x 25 µm**
 - Tracker: **50 μm** in rφ and **1mm – 10mm** in z

200

250

ch.part mm² bx

vlindrica

10

 10^{-2}

10⁻³

350 z [mm]

@ 3 TeV

300

Same Detector for 380 GeV and 3 TeV?

CERN

- Different beam conditions would allow to consider different detectors
- Solenoid, yoke, calorimeters (tracker?) unchanged for practical reasons
- Possible differences:
 - Replacement of BeamCal necessary
 - Reduced beamstrahlung @ 380 GeV
 - Allows smaller beam pipe ($\Delta r \sim 3 \text{ mm}$)
 - Move innermost vertex layer closer to interaction point
- Currently focusing on **single detector**, with a layout **optimized for 3 TeV**

Defining reconstruction window

- 10 ns before, 30 ns after event
- Building physics objects

Background suppression by

Suppression via

Fully-hadronic tt event

- Timing requirements
- Particle type and p_T
- Retaining high-p_τ objects
- Cuts adapted per detector region

Background suppression @ 380 GeV

Background suppression @ 380 GeV

- Fully-hadronic tt event
- Background suppression by
 - Defining reconstruction window 10 ns before, 30 ns after event
 - Building physics objects
 - Suppression via
 - Timing requirements
 - Particle type and p_T
 - Retaining high-p_T objects
 - Cuts adapted per detector region

background suppressed

Fully-hadronic tt event

Background suppression @ 3 TeV

- Background suppression by
 - Defining reconstruction window 10 ns before, 30 ns after event
 - Building physics objects
 - Suppression via
 - Timing requirements
 - Particle type and p_{T}
 - Retaining high-p_T objects
 - Cuts adapted per detector region

full event

Background suppression @ 3 TeV

- Fully-hadronic tt event
- Background suppression by
 - Defining reconstruction window 10 ns before, 30 ns after event
 - Building physics objects
 - Suppression via
 - Timing requirements
 - Particle type and p_T
 - Retaining high- p_{T} objects
 - Cuts adapted per detector region

background suppressed

Detector Technologies and Prototype Evaluation

Vertex Detector

Design driven by flavor tagging

- Minimal scattering
- High-resolution

Requirements

- Low mass
 0.2% X₀ per layer
- Low power consumption
 50 mW/cm⁻² for air-flow cooling
- High single-point resolution $\sigma_{sP} \sim 3 \ \mu m$
- Precise time stamping ~ 5 ns

Current design:

- Hybrid pixel detectors in double layers
- 50+50 μm sensor+ASIC, 25 μm pitch
- Surface area of ~ 0.84 m²
- Three barrel layers, 2x three spiral disks

Tracking Detector

Design optimized for good efficiency & momentum resolution

- Many layers
- Large lever arm

Requirements

- Low mass, high rigidity
 1 2% X₀ per layer
- Good single-point resolution $\sigma_{\text{SP}} \sim 7 \ \mu m$
- **High granularity** few % occupancy from backgrounds

Current design:

- Monolithic detector with (elongated) pixels
- 200 µm sensor, including electronics
- Surface area of approx. 140 m²
- Leakless water cooling

Silicon Technologies

CERN

- Looking at selected silicon detector technologies under investigation
- Collaboration with other experiments (ALICE: HR-CMOS, ATLAS: HV-CMOS)

Hybrid Silicon Detectors

- Traditional design of HEP silicon pixel detectors: independent sensor/readout
 - Sensor contains pn-junction
 - Readout chip implements front-end
- Different possibilities for interconnects: solder bumps, glue
- Small pixel cell sizes achieved, down to 25 µm limited by interconnects

Established mixed-mode CMOS Complex circuits possible Small technology nodes available

Relatively high material budget Interconnects: cost-driver, limits pixel pitch & thickness (stability)

Hybrid Prototypes

CLICpix2 + planar sensor

- Goal: 50 μm thin planar silicon sensors
- Challenge: single-chip bump bonding at 25 μm pitch
- First successes, 130 µm thick sensor

- First assemblies tested in beam
- Calibration ongoing

CLICpix2 + C3PD

- Capacitively coupled
- Active sensor fabricated in 180 nm HV-CMOS process

• Finite-element simulation of capacitive coupling

3.2 mm

Monolithic Silicon Detectors

- Depleted Monolithic Active Pixel Sensors (DMAPS) •
 - Flectronics and sensor on same wafer
 - Fully integrated: amplification & readout
- Shield electronics via additional implants •
 - Deep collection diode surrounding electronics
 - Separate shielding & collection diode

Lower mass than hybrids No bump-bonding Cheaper manufacturing

Smaller depletion volume & signal Intricate sensor design Limited in-pixel functionality

Monolithic Prototypes

ALICE Investigator

- Analog test chip for technology evaluation
- 180 nm HR-CMOS process
- Different pixel pitches & geometries

ATLASpix_Simple

- Commercial 180nm HV-CMOS process
- Designed for ATLAS ITK Upgrade

• Timing performance investigated in test beams

Vertex Detector Air Cooling

- Vertex detector cooled with forced air flow for minimum material
- Spiral vertex disks allow air flow through detector
 - Simulation studies of air velocity, temperature, vibrations
 - Verification with 1:1 thermo-mechanical mockup

Mass Flow: 20.1 g/s Average velocity @ inlet 11.0 m/s @ center: 5.2 m/s @ outlet: 6.3 m/s

23/01/2019

S. Spannagel - CLIC Week 2019 - The CLIC detector and physics study

CERN

Lightweight Support for the Tracking Detector

- Proof-of-concept for light tracking detector mechanics
 - Confirm stability and material budget assumptions
 - Off-the-shelf carbon fiber tubes
 - Custom nodes developed and fabricated

- Synergies with ALICE ITS upgrade's outer stave
- Stiffness achieved with low mass structure
- Total weight of the prototype: 926 g

Calorimeters

- Jet energy resolution of $\sigma_{E}/E \sim 5 3.5\%$
 - Highly granular calorimeters required
- Electromagnetic Calorimeter: Si-W
 - 2 mm tungsten plates, 500 µm silicon sensors
 - 40 layers 22 X_0 or 1 λ_1 , 5 × 5 mm² cell size
 - ~2500 m² silicon, 100 million channels
- Hadronic Calorimeter: Scint-Fe
 - 19 mm thick steel plates, interleaved with 3 mm thick plastic scintillator + SiPMs
 - 60 layers: 7.5 λ_1 , 30 × 30 mm² scintillator cell size
 - ~ 9000 m² scintillator, 10 million channels / SiPMs

ECAL: CALICE SiECAL Prototype

- Highly granular calorimeter, optimized for particle flow
 - Si sensors, W absorbers
 - Many years of experience: ASICs, sensor studies, physics prototypes
- **Recently developments:**
 - Test beams at SPS H2
 - First functional "long slab" built
- Talk by V. Boudry "Toward practical feasibility of a SiW-ECAL for LCs"
- Synergies with CMS HGCal project

33

HCAL: CALICE AHCAL Prototype

- Highly granular scintillator SiPM-on-tile HCAL
 - 3 x 3 cm² scintillator tiles, fully integrated design
 - 38 active layers of 72 x 72 cm² in steel absorber
 - Automatic temperature compensation for SiPMs
- Design optimized for mass production: •
 - Automatic SMD SiPM soldering
 - Injection-molded polystyrene tiles
 - Automated wrapping in reflector foil

AHCAL Prototype Test Beam Results

- Many test beam campaigns in 2018 at SPS H2 beam line
 - Calibration with muons, energy scans for e-, π
- Prototype can resolve spatial and temporal development of hadronic showers in detail

Forward Instrumentation: BeamCal & LumiCal

- Very forward electromagnetic sampling calorimeters
 - LumiCal for luminosity measurement via Bhabha scattering (few per mille accuracy)
 - BeamCal for very forward electron tagging (for beam tuning)
- e and γ acceptance down to small angles
 - Compact design, small Molière radius
- Current design: BeamCal: GaAs, LumiCal: Si
- Talk by M. Idzik on LumiCal tests & ASIC
 I e⁻ DESY Testbeam

S. Spannagel - CLIC Week 2019 - The CLIC detector and physics study

Performance Studies

and Detector Design Validation

S. Spannagel - CLIC Week 2019 - The CLIC detector and physics study

Performance Studies & Validation

- Full simulation and reconstruction studies performed with **iLCSoft framework**, developed by the Linear Collider Community
- Continuous improvements of simulation & reconstruction software
 - **DD4HEP** for geometry description, others are on the move: LHCb, CMS...
- **DELPHES** card available for fast simulation in their official repository
 - Three cards for the different CLIC stages
- Talk on performance studies by M. Weber: "Detector Performance at CLIC"
- Document with comprehensive performance studies published: "A detector for CLIC: main parameters and performance"

38

DD4hep

Tracking

• Tracking based on conformal transformation:

 $u = \frac{x}{x^2 + y^2} \quad v = \frac{y}{x^2 + y^2}$

"maps circles passing through the origin onto straight lines"

- Pattern recognition: straight line search with cellular automaton (robust: noise, missing hits)
- Fit in z-s (along helix) reduces combinatorics
- Displaced tracks do not go through origin
 - Apply second-order corrections to transformation
 - Adapt search parameters and order
- Kalman-filter based fit of reconstructed tracks

CLICdet Tracking Performance

CERN

- Achieved momentum resolution 2 x 10⁻⁵ GeV⁻¹ for high energy muons in the barrel
- Tracking efficiency very high, negligible impact of background particles > 1 GeV
- High efficiency for displaced tracks within acceptance (min. 5 tracker hits required)

Flavor Tagging Performance

- Several studies on flavor tagging efficiencies performed, to be found in performance note
 - LCFIPlus package is used for flavor tagging

- Charm tagging performance
 - Using di-jet samples, E_{CM} = 500 GeV
 - With and without background (3 TeV, 30 BX)
 - At 80% charm identification efficiency, beauty/light-flavor misidentification is
 - 25% without backgrounds
 - 30% with 3 TeV background overlay

Jet Reconstruction & Particle Flow Algorithm

- Calorimeter clusters reconstructed via particle flow by PandoraPFA •
 - Uses reconstructed tracks and muon hits to match calorimeter hits

•

Jet Energy & Missing E_{T} Resolution

- CERN
- Jet energy resolution from $Z/\gamma^* \rightarrow qq$, compare reconstructed and MC truth jets
 - Impact from 3 TeV backgrounds especially for low-energy jets, resolution 6-8%
- W/Z mass: 2σ separation with VLC7 jets, including 3 TeV backgrounds

Summary Documents

2012 CLIC Conceptional Design Report

- A Multi-TeV Linear Collider Based on CLIC Technology
- Towards a staged e+e- linear collider exploring the terascale
- Physics and Detectors at CLIC

2016 Updated Baseline for a staged Compact Linear Collider

2018 Documents for the European Strategy Update

- CLIC 2018 Summary Report
- CLIC Project Implementation Plan
- The CLIC Potential for New Physics
- Detector technologies for CLIC [in review]

Summary

- CLIC offers opportunity for broad precision physics program
- Detector model CLICdet optimized and validated in full simulation
- Broad and active R&D on vertex and tracking detectors
 - Focus on technologies to simultaneously fulfill all CLIC requirements
- Contributions to CALICE and FCAL calorimeter R&D collaborations
 - High-granularity ECAL and HCAL prototypes constructed and tested
- The CLICdp Collaboration has prepared comprehensive documentation on physics program, detector design and R&D activities
- Summaries have been submitted to the European Strategy Update for Particle Physics

Resources

Compact Linear Collider Portal http://clic.cern/

CLIC input to the European Strategy for Particle Physics Update 2018-2020 http://clic.cern/european-strategy

CLICdp Publications on CERN Document Server https://cds.cern.ch/collection/CLIC Detector and Physics Study

The CLICdp Collaboration

CLICdp Working Groups (WG)

Cost Estimate for the CLIC Detector

- Based on detector work breakdown structure, aimed at 30% uncertainty
- Main cost driver: silicon sensors for electromagnetic calorimeter
 - Example: 25% cost reduction of silicon per unit of surface → overall detector cost reduction by > 10%

