A Metamaterial Structure for Wakefield Acceleration

Xueying Lu, Michael A. Shapiro, Ivan Mastovsky, Richard J. Temkin
Massachusetts Institute of Technology (MIT)

Manoel Conde, John G. Power, Jiahang Shao, Eric E. Wisniewski
Argonne National Laboratory (ANL)

Chunguang Jing
Euclid Techlabs LLC

January 21, 2019
A Metamaterial for Next Generation Particle Accelerators

Published 7 January 2019

An experiment reveals the potential of custom-engineered metamaterials to yield higher accelerating gradients than current particle accelerator technology allows.

See more in Physics
Outline

- Introduction & Motivation
- Experimental Facilities
- Design and theory
 - Metamaterial Structure Design
 - Theory and Simulation
- Experiment
 - Structure Fabrication
 - Experimental Results
- Conclusions
Metamaterials

- **Metamaterial (MTM):**
 - An artificial material with a subwavelength structure
 - Exhibits properties not usually found in natural materials
 - Especially a negative refractive index: simultaneous $\varepsilon, \mu < 0$

- **Left-handed materials**
 - Negative refraction

\[\begin{align*}
\varepsilon > 0, \mu > 0 & \quad & \varepsilon < 0, \mu < 0
\end{align*} \]
Cherenkov Radiation

- Electron velocity exceeds wave phase velocity
- $\varepsilon, \mu > 0$
- Wave vector and energy flow **parallel**

Reversed Cherenkov Radiation

- $\varepsilon, \mu < 0$
- Wave vector and energy flow **anti-parallel**

Structure-Based Wakefield Acceleration

- **Collinear acceleration:**
 - Drive beam generates high power microwaves in a structure
 - Witness beam gets accelerated after the drive beam

- **Two-beam acceleration (TBA):**
 - Drive beam generates high power microwaves in a power extractor
 - RF power is transferred from the power extractor to the accelerator
 - Main beam gets accelerated

This experiment: A Power Extractor
Motivation

- **Science:**
 - Verify reversed Cherenkov radiation in a metamaterial structure from a direct measurement

- **Application:**
 - High power microwave generation for wakefield acceleration in both collinear and two-beam acceleration regimes
 - All-metal structure to survive high RF power
Experimental Setup at AWA

Diagnostics:

ICT (Integrating current transformer):
Bunch charge

YAG screen:
Bunch transverse size

RF probes:
Output microwave
Outline - ANL WFA Experiment

- Motivation
- Experimental Facilities

- Design and theory
 - Metamaterial Structure Design
 - Theory and Simulation

- Experiment
 - Structure Fabrication
 - Experimental Results

- Conclusions
Wagon Wheel Structure Unit Cell

- Wagon wheel structure
 - Periodic subwavelength structure
 - Period: 2 mm
 - Free wavelength at 11.42 GHz: 26 mm
 - Negative group velocity
 - Fundamental mode: TM mode
 - Interaction frequency: 11.42 GHz
 - Cutoff frequency of an empty waveguide: 14.2 GHz

Plate thickness:
1 mm each

Copper
Stainless steel

Dispersion Curve

- Fundamental Mode
- Light Line
CST Wakefield solver, single bunch

- 45 nC, $\sigma_z = 1.2$ mm

- 26 MW steady state in the backward port

- Much lower power in the forward port
 - Reversed Cherenkov radiation

Analytical theory:

$$P = q^2 k_L |v_g| \left(\frac{1}{1 - \frac{v_g}{c}} \right)^2 \Phi^2$$

$$= 25 \text{ MW}$$
“Artificial dielectric” structure with all metal

- Similar “bouncing feature” of the electric field in the wagon wheel structure and a dielectric tube
- Very easy to tune the effective dielectric constant with the huge parameter space in the metamaterial design
Outline - ANL WFA Experiment

- Motivation
- Experimental Facilities
- Design and theory
 - Metamaterial Structure Design
 - Theory and Simulation
- Experiment
 - Structure Fabrication
 - Experimental Results
- Conclusions
Installed Experiment at AWA

RF loads

Vacuum Chamber

RF probes

65 MeV e− beam

RF Probe (backward port)

RF Probe (forward port)

MTM structure

Electron beam
Outline- ANL WFA Experiment

- Motivation
- Experimental Facilities
- Design and theory
 - Metamaterial Structure Design
 - Theory and Simulation
- Experiment
 - Structure Fabrication
 - Experimental Results
 - Cold Test
 - Single Bunch High Power Test
 - Two-bunch High Power Test
- Conclusions
Bead Pull Measurement

- Dispersion agrees very well with simulation
- Constant phase velocity
 - From the subwavelength feature
Single Bunch Experiment

- High RF power from a single 45 nC bunch
 - Experiment: 25 MW
 - Simulation: 26 MW (steady state)
 - Analytical theory: 25 MW

- Reversed Cherenkov radiation verified
 - Coherent radiation at 11.4 GHz
 - Backward port has much more power
Scaling with Charge

- Good linear scaling of gradient vs. charge, good agreement with theory
 - No breakdown events
Two-Bunch Experiment

Single bunch

Two bunches with 0 deg phase difference

Two bunches with 180 deg phase difference
Highest power shot

- Two bunches with a total charge of 85 nC
- 80 MW extracted RF power
- 50 MV/m decelerating electric field
 - 75 MV/m available accelerating gradient for a possible witness bunch
- ~130 MV/m maximum surface field
Next Experiment: Longer Structure, GW-level

- 100-cell structure (20 cm long), 8 bunches, 40 nC/bunch
 - 0.9 GW peak power
 - 170 MV/m decelerating gradient
 - 250 MV/m available accelerating gradient for a witness bunch

Bunch Train

To Output Ports

CST simulation of output power in the backward port

Power (GW)

Time (ns)
Conclusions

- A wagon wheel metamaterial structure at 11.4 GHz has been tested at the Argonne Wakefield Accelerator as a power extractor.

- Reversed Cherenkov radiation has been verified in a metamaterial structure with a negative group velocity.

- High microwave power was generated, in agreement with analytical theory and CST simulations.
 - Single bunch, 45 nC, 25 MW, 28 MV/m decelerating gradient, 43 MV/m accelerating gradient
 - Two bunches, 85 nC, 80 MW, 50 MV/m decelerating gradient, 75 MV/m accelerating gradient

- Wagon wheel structure has its unique advantages for wakefield acceleration
 - Rugged all-metal structure, no dielectrics
 - Large parameter space for optimization and precise control of electromagnetic properties.
Acknowledgement

Funding agency:

At ANL: U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357.