# **Status of Quadrant-type Waveguidedamped Structure Fabrication** and Single-Cell SW Cavity Test

#### Tetsuo ABE

<tetsuo.abe@kek.jp>

High Energy Accelerator Research Organization (KEK), Japan

CLIC Workshop 2019 @ CERN

2019-01-21

## Contents

 Status of Quadrant-type Waveguide-damped Structure (TD24\_QUAD) Fabrication

2. Status of Single-Cell SW Cavity Test



## **Disk-type v.s. Quadrant(or Half)-type Disk-type**





A damped disk

Disks stacked and bonded

#### Advantages

- ✓ Machining by turning
- $\checkmark$  Very smooth surface (Ra = ~30 nm)
- $\checkmark$  Shallow machining damage (< 1  $\mu$ m)

#### Disadvantages

- ✓ Ultra-high-precision machining of dozen of disks  $\rightarrow$  Stack and bonding
- $\checkmark$  Great care needed
- ✓ Surface currents flow across disk-to-disk junctions.

#### Quadrant-type





A Quadrant

#### **Three Quadrants**

#### Advantages

- Surface currents do not flow across any bonding junction.
- ✓ Simple machining by five-axes milling machines
- ✓ Simple assembly process
  - $\rightarrow$  Possibility of significant cost reduction

#### Disadvantages

- $\checkmark$  Not very smooth surface (Ra =  $\sim 0.5 \,\mu\text{m}$ )
- $\checkmark$  Deep machining damage (10 20  $\mu$ m)
- Virtual leak from quadrant-to-quadrant junctions
- Field enhancements at the corners of quadrants



#### **Demonstration of the High-Gradient Performance** with a single-cell SW cavity

(SW: Standing Wave)



scribed in [13]. (c) A thermocouple is attached.

**Good high-gradient performance demonstrated** Multi-cell traveling structure

Tetsuo ABE (KEK)

120

E<sub>acc</sub> [MV/m]

**CLIC** specification

110

#### Postmortem of SD1\_QUAD-R04G01\_K1



CLIC Workshop 2019 (2019-01-21)

Contact surface





## Cavity Design based on CLIC-G\*

45000.00 40000.00 35000.00

5000.00

0.00

Made by Jiayang Liu (THU) and Alexej Grudiev (CERN)



#### From the Cavity Design to the 3D Mechanical Drawing



## A Quadrant Machined with Ultraprecision Milling

By U-Corporation



## RF Measurement before EBW (1/3)

With the four quadrants clamped

(EBW: Electron-Beam Welding)



CLIC Workshop 2019 (2019-01-21)

RF Measurement before EBW (2/3)

Measured by T. Takatomi and T. Abe



CLIC Workshop 2019 (2019-01-21)

Tetsuo ABE (KEK)

## RF Measurement before EBW (3/3)



→11.4084 GHz (vac)
→11.4074 GHz (vac&30degC)

~10 MHz increase Expected through EBW

#### EBW on the side surfaces

By TAIYO EB tech





#### Four Quadrants Bonded with the EBW

(<u>EBW</u>: <u>E</u>lectron-<u>B</u>eam <u>W</u>elding)



#### **RF** Measurement after the EBW

Measured by T. Takatomi and T. Abe



#### Before and after the the EBW



CLIC Workshop 2019 (2019-01-21)

## Before and after the EBW





#### Change in Transverse Size Measured using a CMM<sub>(Carl Zeiss UPMC 850 CARAT)</sub>

By T. Takatomi (KEK / Mechanical Engineering Center)



## After brazing tuner pins...



Most of the tuner pins dropped!

First time to be processed at a high temperature



## Longitudinal Size Measurement after the Final Machining





## Updated Schedule on TD24\_QUAD

① Milling of quadrants to be completed by March 2019

- (2) RF & size meas.  $\rightarrow$  EBW  $\rightarrow$  RF & size meas. by April 2019
- ③ Brazing of tuner pins, couplers, etc. by May 2019
- ④ High-gradient test to be started before summer 2019



#### DUT: SLAC Full-Choke Cavity see S

(For details, see <u>SLAC-PUB-15145</u>)



# Fields in Full-Choke cavity,normalized to 10 MW of input powerV. Dolgashev





## Fields in Full-Choke cavity, normalized go 10 MW of wall losses

V. Dolgashev



Surface electric field,  $E_{max} = 319 \text{ MV/m}$  Surface magnetic field  $H_{max} = 526 \text{ kA/m}$ 

Surface Poynting vector  $P_{max} = 5.7 \times 10^{13} \text{ W/m}^2$ 

## Motivation



BDR determined by ✓ Material hardness? ✓ Thermal stress?



#### Laser **Power-Density** Calibration based on Ablation Threshold



#### Laser **Power-Density** Calibration based on Ablation Threshold



#### 1<sup>st</sup> irradiation on Point A



LIGHT WILL BE MEASURED BY

USING A HYPERSPECTRAL

Valery Dolgashev predicted that there should
be a clear threshold in the vacuum-pressure response, which corresponds to the ablation threshold.
THE SPECTRUM OF THE EMITTED

CLIC Workshop 2019 (2019-01-21)

Tetsuo ABE (KEK)

32

#### SEM images show pulse heating damage from the green laser.



# SUMMARY

#### TD24\_QUAD status

(EBW: Electron-Beam Welding)

- The fabrication had been successful until the EBW.
- Two of the four quadrants turned out not to be pure copper after the first high-temperature process of brazing.
  - Most probably CuZr
- We have decided to started over; need additional several months.
- High-gradient test to be started before summer 2019
- Full-choke single-cell cavity test with laser
  - Everything just ready for high-gradient test, including the high-power pulsed laser system
  - Compare BDRs with or without the laser irradiation for various irradiation positions

#### Other single-cell test cavities

- Two TD24-based damped cavities (with the disks brazed or diffusion-bonded) waiting to be tested
- Undamped cavities made of large-grain copper



CLIC Workshop 2019 (2019-01-21)

# **Backup Slides**

## Fields in Full-Choke cavity, normalized to 10 MW of input power

V. Dolgashev



Surface electric field,  $E_{max} = 309 \text{ MV/m}$ 



Surface electric field,  $H_{max}$  = 510 MV/m





Qloaded = 4516.46 beta= 1.659, **Qo = 12009** 

Measured (Blue) and calculated S11 (Red), 0.15 dB losses added to calculated S11., S11 HFSS= 0.24774

CLIC Workshop 2019 (2019-01-21)

## Parameters of periodic structures

| Name                             | A2.75-T2.0-Cu | A3.75-T1.66-Cu | A3.75-T2.6-Cu | A3.75-T2.6<br>FullChoke-Cu | A5.65-T4.6-<br>Choke-Cu | A5.65-T4.6-<br>Cu | T53VG3   |
|----------------------------------|---------------|----------------|---------------|----------------------------|-------------------------|-------------------|----------|
| Stored Energy [J]                | 0.153         | 0.189          | 0.189         | 0.471                      | 0.333                   | 0.298             | 0.09     |
| Q-value                          | 8.59E+03      | 8.82E+03       | 8.56E+03      | 13.5E+3                    | 7.53E+03                | 8.38E+03          | 6.77E+03 |
| Shunt Impedance<br>[MOhm/m]      | 102.891       | 85.189         | 82.598        | 52.4                       | 41.34                   | 51.359            | 91.772   |
| Max. Mag. Field [A/m]            | 2.90E+05      | 3.14E+05       | 3.25E+05      | 3.22E+5                    | 4.20E+05                | 4.18E+05          | 2.75E+05 |
| Max. Electric Field<br>[MV/m]    | 203.1         | 268.3          | 202.9         | 203.3                      | 212                     | 211.4             | 217.5    |
| Losses in a cell [MW]            | 1.275         | 1.54           | 1.588         | 2.501                      | 3.173                   | 2.554             | 0.953    |
| a [mm]                           | 2.75          | 3.75           | 3.75          | 3.75                       | 5.65                    | 5.65              | 3.885    |
| a/lambda                         | 0.105         | 0.143          | 0.143         | 0.143                      | 0.215                   | 0.215             | 0.148    |
| Hmax*Z0/Eacc                     | 1.093         | 1.181          | 1.224         | 1.215                      | 1.581                   | 1.575             | 1.035    |
| t [mm]                           | 2             | 1.664          | 2.6           | 2.6                        | 4.6                     | 4.6               | 1.66     |
| Iris ellipticity                 | 1.385         | 0.998          | 1.692         | 1.692                      | 1.478                   | 1.478             | 1        |
| Peak Poynting vector<br>[W/um^2] |               |                |               | 21.4                       |                         |                   |          |

V. Dolgashev

