

Dark Current Mapping, Fluctuation and Evolution

Jan Paszkiewicz
CLIC Workshop, CERN
22 January 2019

Spatial Measurements

Dark Current vs. RF Pulse Shape

- Dark current measured rises and falls as structure fills and unfills – contains information about different parts of the structure.
- Structures have low group velocity: 0.01...0.02 c.
- Emitted electrons can become relativistic within one cell.
- With long RF pulses, the entire structure emits electrons simultaneously.
- A very short pulse allows field emission to be probed along the structure.

Separating Parts of the Structure in Time

Mapping Field Emission

Dark current power scan with a 10 ns pulse length.

Dark current by sample as a function of surface E-field.

Mapping Field Emission

Fowler-Nordheim plot of dark current at each sample.

Fitted β value for each sample.

Behaviour Over Time

Dark current signal at $E_{acc} = 100 \text{ MV/m}$ on different days.

Fitted β value for each sample on different days.

Comparison with BD position (T24 PSI 1)

Almost all BDs during time window happened in beginning of structure.

Comparison with BD position (T24 PSI 2)

signal to noise ratio.

Proposed Interpretation

- Field emitted current decayed in regions with few BDs.
- Fluctuated at start of structure, where most BDs occurred.
- Change in behaviour between ramping and flat run.
- Breakdown craters cause changes in geometry: fluctuations in β and current density
- Decay in field emission = self-healing / conditioning behaviour?
- I.e.: too aggressive conditioning damages the surface faster than it can heal?

Dispersion and Tapering

Observed more current from end of structure than beginning.

Fitted β lower at end of structure. Suggests that peak E field decreases towards the end.

Design gradient as a function of position at 11.994 GHz – **implies opposite effect!**

Dispersion of the pulse? Causes pulse to spread in time due to varying group velocity with frequency.

Dispersion Simulation

Fluctuation Measurements

Dark Current Fluctuations in RF Structures

- Stochastic model of breakdown nucleation has been proposed by Ashkenazy et.al.
- Fluctuations in dark current could give insight into dislocation dynamics inside copper.
- Breakdown corresponds to bifurcation point in dislocation dynamics – stable fixed point disappears.
- Warning signs before breakdown might be observable.

E. Engelberg, Y. Ashkenazy, M. Assaf

Experimental Setup

Example Dark Current Pulses

Raw upstream dark current

Dark current with high pass filter and amplifiers

Improvements to Measurement

- Higher dynamic range oscilloscope: (8 bits: 48 dB, 10 bits: 60 dB)
- Higher sample rate and bandwidth (10 GS/s, 1 GHz)
- Running much closer to breakdown.
- Replaced diode detector with IQ demodulator.

Previously:

Now:

IQ Demodulator

- Previously, concluded that incident RF had to be measured more accurately to take into account RF fluctuations.
- IQ demodulator is linear and gives phase information allows full reconstruction of original waveform in time domain.
- Very fast, high resolution, synchronised sampling of RF and dark current (built in acquisition has jitter and lower resolution)

Reconstruction of DC pulse

Reconstruction of DC pulse

Measured DC fluctuations still lower than limits set by static field emitter with known RF fluctuations.

Measurements with High Pass Filter

Low frequency components with low fluctuation removed to allow more amplifier gain and lower noise floor.

Measurements with High Pass Filter

. 4. 4. 3 rat 875

245

250

Total signal

Background

230

 $P^{1/2}_{c}(W^{1/2})$

Deviation from mean

235

240

 E_{pk} (MV/m)

Data shown for power values up to **55.2 MW**. BD occurred at **55.5 MW**.

Getting Even Closer to Breakdown

No power scans. Let system run at high power and wait for breakdown. Saved 1 in every 15 pulses.

Getting Even Closer to Breakdown

Saved 1 in every 20 pulses.

Data shown for this range.

Time Alignment Limitations

- Misalignment of pulses in time looks like fluctuation, proportional to time difference / rise time.
- Not possible to align perfectly. Tried various forms of threshold crossing and cross-correlation for alignment.
- Ultimate limit of jitter is time resolution of the oscilloscope.
- Puts a limit on smallest measureable fluctuation in RF and dark current.

Simulated apparent fluctuation PSD caused by a shift of 2 samples (200 ps)

Tracing RF Fluctuations

state amplifier

klystron

RF Load

Signal amplitude at each stage is relative.

Noise at Klystron Input

Fluctuations in DC Experiments

Developed a broadband, high voltage bias tee to act as a probe to measure small currents in the DC system.

Protects sensitive equipment from high voltage and BD currents.

Can measure fast phenomena (< 250 ps risetime).

Currently limited by switching noise in HV power supply (work in progress)

Small-signal bandwidth measurement

Thank you!

Any questions?

Noise and Beta Fit

Random noise gives very large β values. Small signal = low SNR = higher β than expected.

Sufficiently large SNR: no systematic error due to signal magnitude.

History of T24PSI1 in XBox 2

History of T24PSI2 in XBox 2

PSD of Pulse to Pulse Fluctuations

Measurement of pulsed dark current signal:

Averaging in time domain first removes random component:

$$FT[\langle v_i(t) \rangle] \cdot FT[\langle v_i(t) \rangle]^* = D(\omega)D^*(\omega)$$
 PSD of deterministic component

Ensemble average of PSDs includes random component:

$$\langle FT[v_i(t)] \cdot FT[v_i(t)]^* \rangle = \langle (D(\omega) + R_i(\omega))(D(\omega) + R_i(\omega))^* \rangle =$$

$$D(\omega)D^*(\omega) + \langle R_i(\omega)R_i(\omega)^* \rangle$$
PSD of random component – not zero due to square term. (Effectively variance of random distribution)

Taking the difference between the two leave PSD of random component only.

