

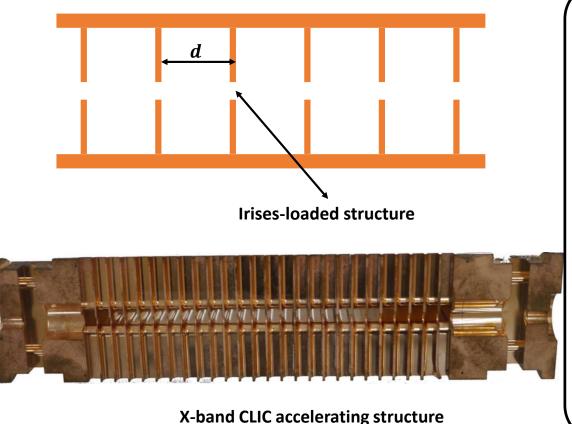
Investigations into RF-driven dielectric-loaded accelerating structures for linear collider applications

Yelong Wei, Alexej Grudiev

CERN, European Organization for Nuclear Research Email: yelong.wei@cern.ch

Outline

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
 - Wakefield Studies for a TM02 DDA structure
- Summary & Outlook


Outline

Background & Introduction

- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
 - Wakefield Studies for a TM02 DDA structure
- Summary & Outlook

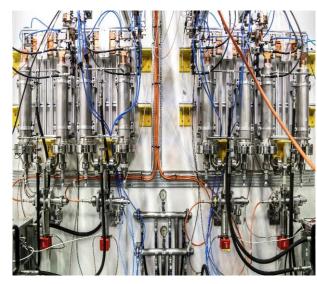
Introduction

• Slow wave accelerators: Irises-loaded accelerating structures

Irises form periodic structure in waveguide:

- Irises reflect part of the wave;
- Irises slow down the phase velocity so that it equals the particle velocity;
- The group velocity is usually around 1% of c.
- In CLIC studies, gradient up to 100 MV/m (pulse length of 200 ns) has been demonstrated at X-band frequency with rf pulses of 100s ns.

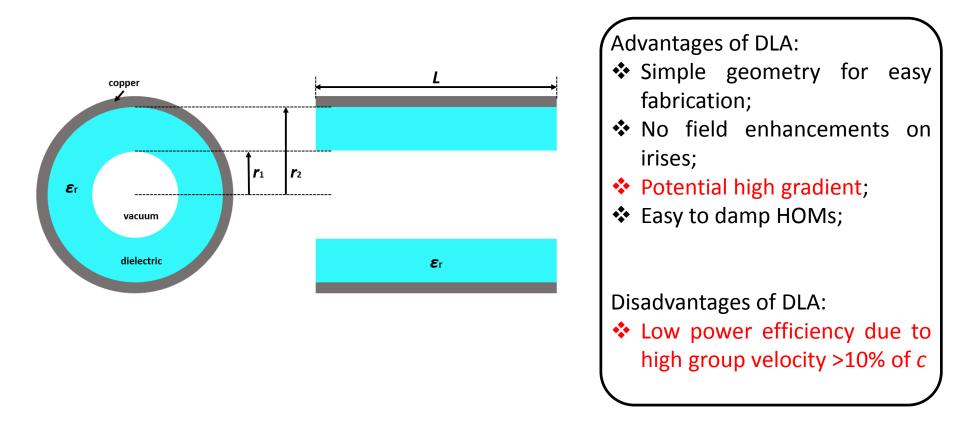
Test Stands at CERN


- Xbox 1: 50 MW klystron, 50 Hz, connection with CLEAR (e⁻ linac)
- Xbox 2: 50 MW klystron, 50 Hz
- Xbox 3: 4x6 MW klystrons, 400 Hz, 4 structure test slots
- Sbox: 43 MW klystron, 25 Hz, S-band (2.9985 GHz)

50 MW klystron with pulse duration of 1.2 μs

Pulse Compressors

CLIC test platform

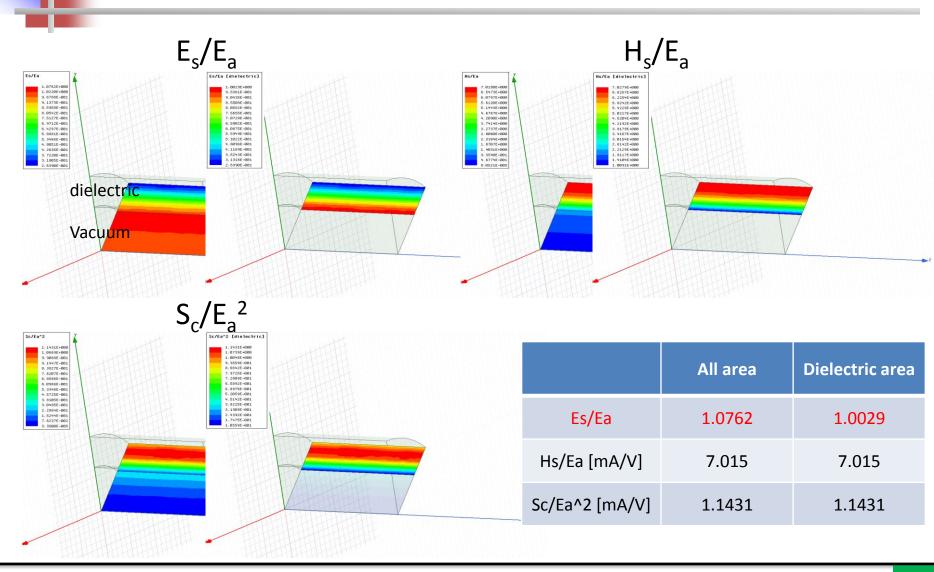

Courtesy of slides from Jan Paszkiewicz, CERN

Outline

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
 - Wakefield Studies for a TM02 DDA structure
- Summary & Outlook

Introduction

• Slow wave accelerators: dielectric-lined accelerating (DLA) structures



DLA Structures

E-field of the TM01 mode ($v_{ m p}=c$)	Electric energy density
the dielectric	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
Vacuum dielectric	
Ez of the TM01 mode ($v_{ m p}=c$)	Magnetic energy density
dielectric	
Vacuum	
Vacadin	
dielectric	

- 1) The axial accelerating field is the maximum electric field in the structure;
- 2) The phase velocity of TM01 mode can be slowed down to c;
- 3) Most of energy is stored in dielectric area, resulting in low power efficiency.

Alumina DLA structure

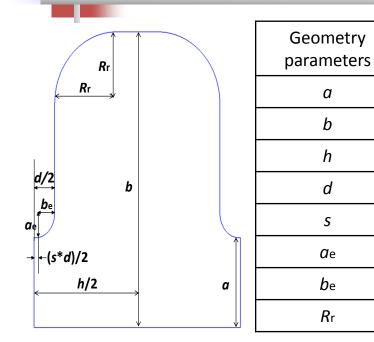
CLIC-G Iris structure

Unit: mm

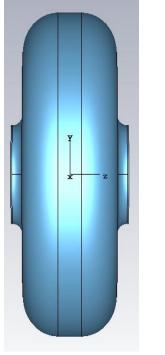
3.15

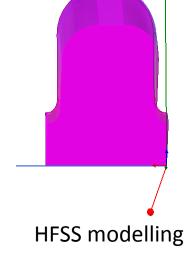
10.35635

8.332

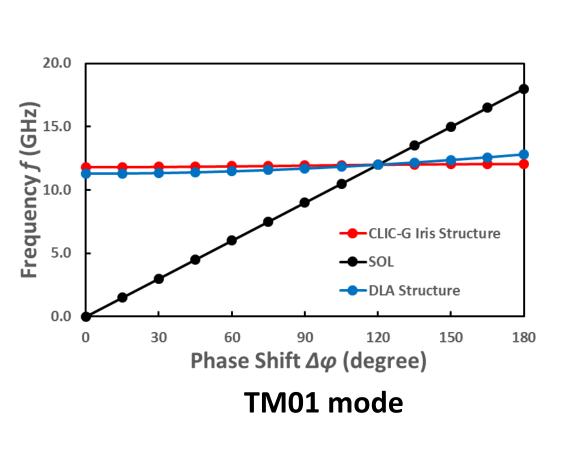

1.67

0.1


0.877


0.7515

2.5


	CST	HFSS
Phase advance	120°	120°
Frequency [GHz]	11.9949	11.9943
Unloaded Qo	7295.2	7245
<i>r'/Q</i> ₀ [Ω/m]	15892	15924
vg/c	0.018	0.018

CST modelling

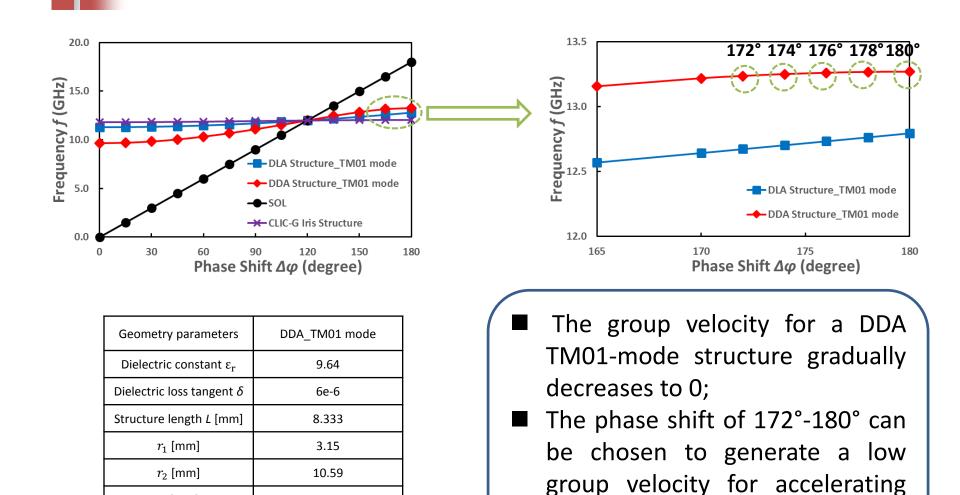
Dispersion Curves

- The red line for CLIC-G iris gradually saturates, and group velocity gradually decreases to 0 with the increase of phase advance;
- The blue line for DLA structure gradually increases, but group velocity can't be 0 with the increase of phase advance.

RF parameters on DLA structures

	CLIC-G iris structure	Quartz (SiO2)	Diamond	Alumina (Al2O3)	MgCaTi	BaTi
Dielectric constant ε_r		3.75	5.7	9.64	20	35
Dielectric loss tangent δ		0.00005	0.0001	0.000006	0.0001	0.0001
Structure length [mm]	8.33	8.33	8.33	8.33	8.333	8.33
Phase advance	120°	120°	120°	120°	120°	120°
Inner radius <i>r</i> 1 [mm]	3.15	3.15	3.15	3.15	3.15	3.15
Outer radius r2 [mm]		7.22	6.20	5.365	4.624	4.245
Frequency [GHz]	11.9943	11.9990	11.9958	11.9924	11.9942	11.9919
Unloaded Qo	7245	6127	3998	4232	2214	1691
<i>r' Q</i> ₀ [Ω/m]	15924	10719	11166	10423	8463	6878
<i>r</i> ′ [MΩ/m]	115	66	45	44	19	12
vg/c	0.018	0.273	0.183	0.111	0.057	0.034
Es/Ea	2.4819	1.0757	1.0755	1.0762	1.0760	1.0760
Es/Ea [dielectric]		1.0289	1.0024	1.0029	1.0152	1.0141
Power required to generate 100 MV/m [MW]	45.0	1013	652	424	266	197

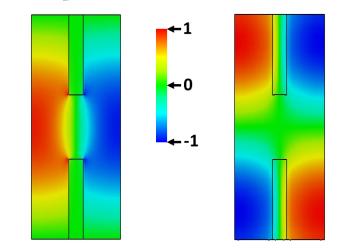
Outline


- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
 - Wakefield Studies for a TM02 DDA structure
- Summary & Outlook

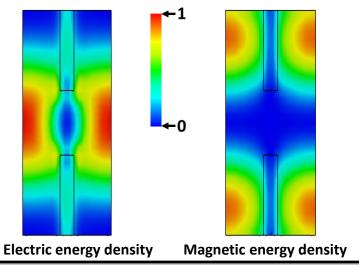
DDA Structures-TM01 mode

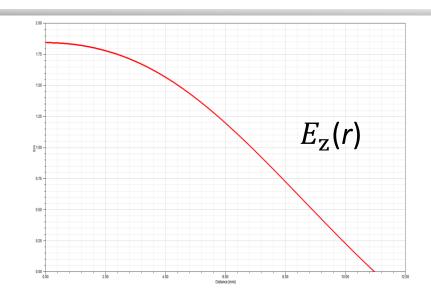
- We can adjust ro, c1, D and ɛr to get the desired frequency of 12 GHz.
 - Such a structure has a periodicity *L* which can be used to slow down the group velocity of accelerating mode.

Dispersion Curves

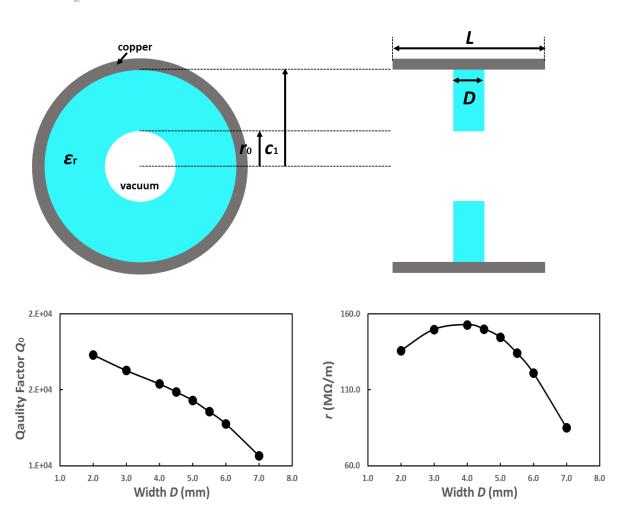


modes.


2


D [mm]

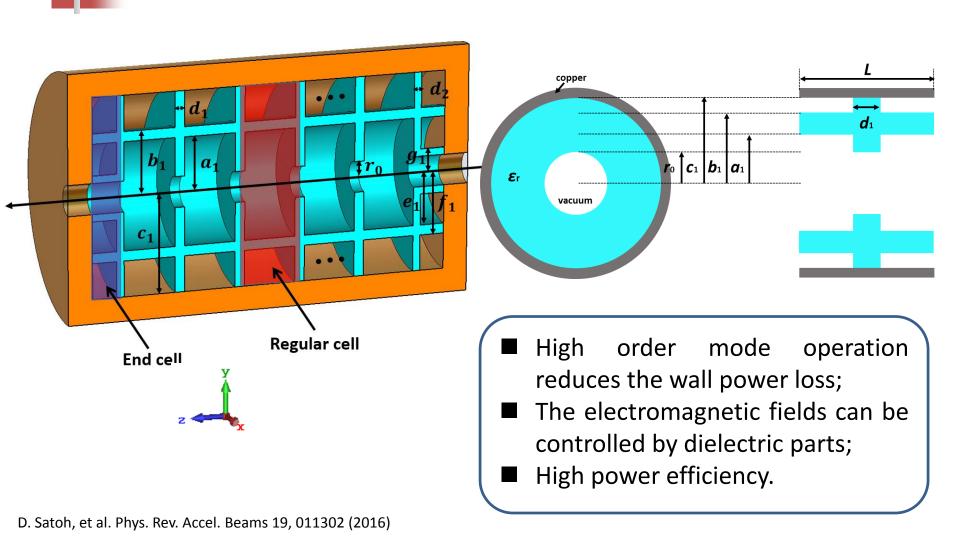
Fields distributions for TM01 π -mode


Longitudinal electric fields Transverse magnetic fields

- Most of the RF energy is stored in the vacuum region;
- The total RF loss including both the wall loss on the conducting cylinder and dielectric loss in the DDA structure can be reduced, thereby resulting in both a high quality factor and shunt impedance at room temperature.

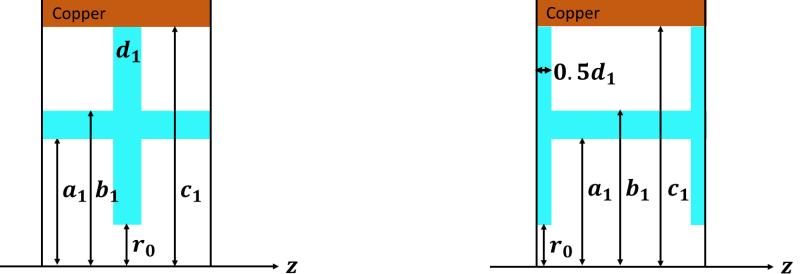
Optimum geometry for DDA TM01 π -mode

Optimum parameters	
Dielectric constant Er	9.64
Dielectric loss tangent δ	6E-6
Inner radius ro [mm]	3.15
Outer radius c1 [mm]	9.925
D [mm]	4.0
Structure period length L [mm]	12.50
Phase advance	180°
Acceleration mode	TM01 π- mode
Frequency [GHz]	11.9926
Unloaded Qo	15392
<i>r'/Q</i> ₀ [Ω/m]	9931
<i>r</i> ' [MΩ/m]	153


Comparisons

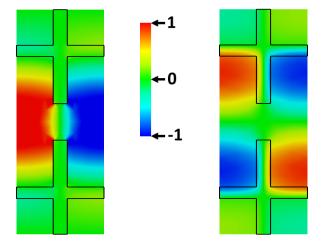
	CLIC-G	DLA	DDA_ TM01 _0. 96 <i>π</i> -mode	DDA_ TM01_ 0. 99 <i>π</i> -mode	DDA_ <mark>TM01</mark> _ <i>π</i> - mode
Dielectric constant <i>ɛ</i> r		9.64	9.64	9.64	9.64
Dielectric loss tangent		6e-6	6e-6	6e-6	6e-6
Period length [mm]	8.33	8.33	11.94	12.36	12.50
Phase advance	120°	120°	172°	178°	180°
Frequency [GHz]	11.9943	11.9924	11.9973	11.9973	11.9953
Unloaded Q0	7245	4232	14815	14870	14872
<i>r'/Q</i> 0 [Ω/m]	15924	10423	9544	10027	10092
<i>r</i> ′ [MΩ/m]	115	44	141	149	150
vg/c	0.018	0.111	0.073	0.018	0
Es/Ea	2.4819	1.0762	4.3071	3.4399	2.8773
Es/Ea [dielectric]		1.0029	0.91723	0.64648	0.65432
Power required to generate 100 MV/m [MW]	45	424	304	71	

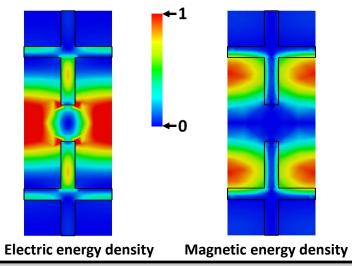
Outline

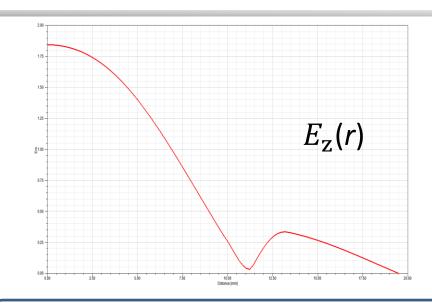

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
 - Wakefield Studies for a TM02 DDA structure
- Summary & Outlook

DDA Structures-TM₀₂ π-mode

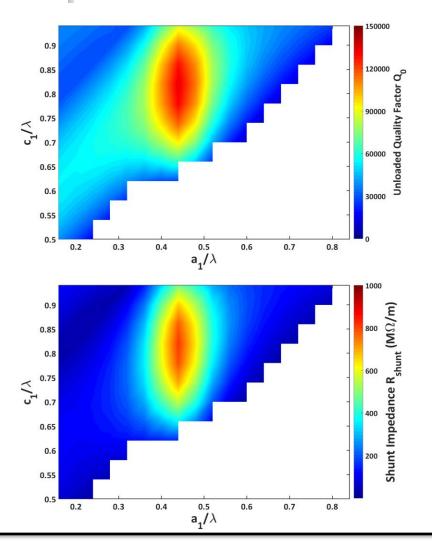
CLIC workshop, 21st - 25th January 2019, CERN

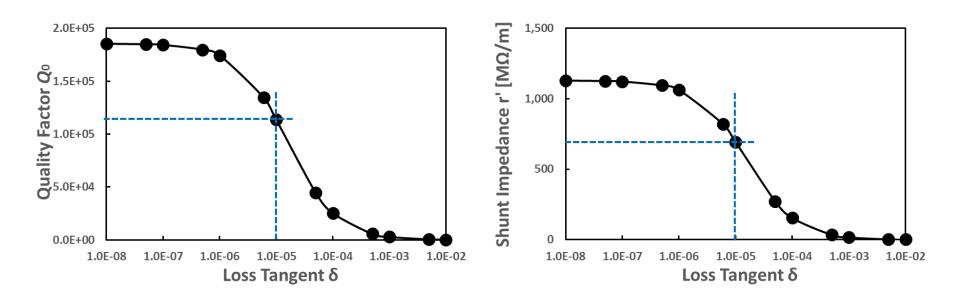

Periodicity = L Periodicity = L Copper Copper


- Both types generate the same RF parameters;
- Different boundary conditions generate different modes due to

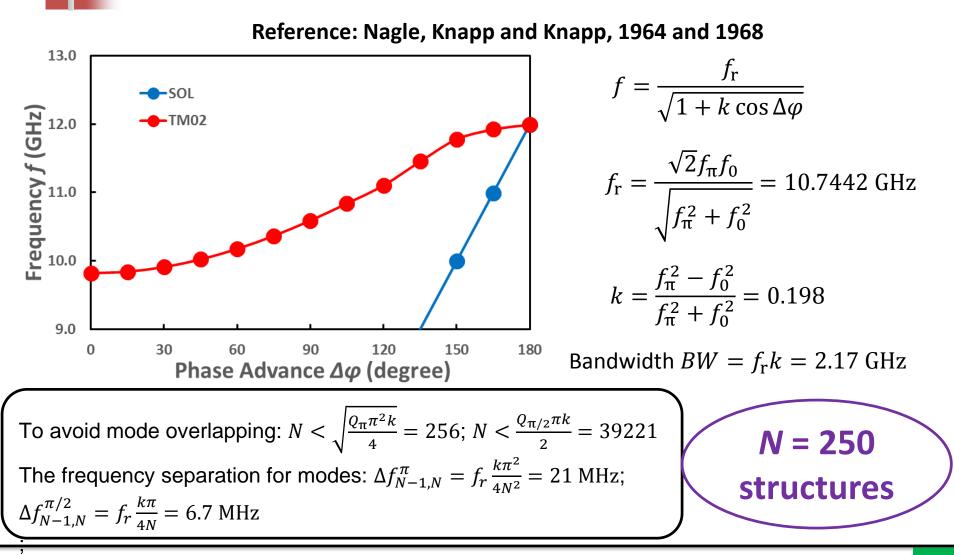

different fields distribution.

Field distributions in a regular cell

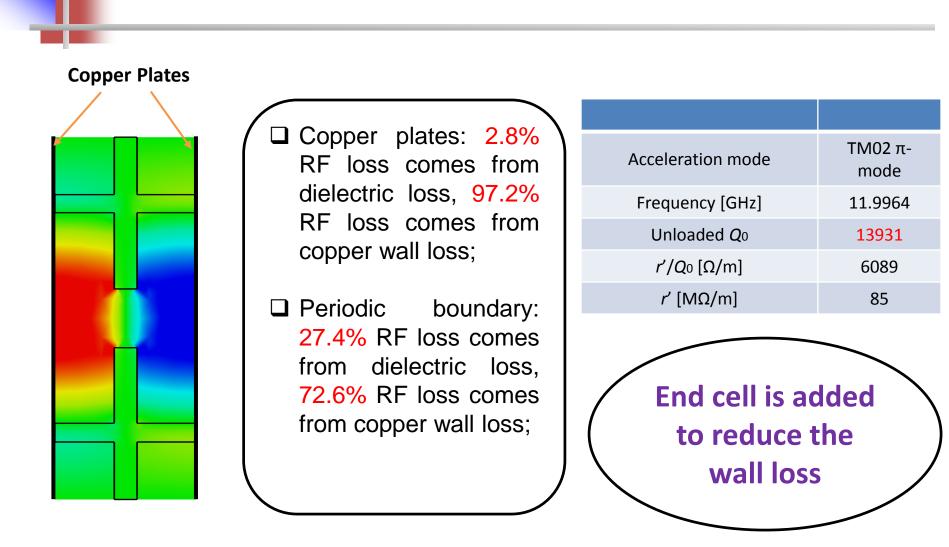

Longitudinal electric fields Transverse magnetic fields


- Most of the RF energy is stored in the vacuum region;
- The total RF loss including both the wall loss on the conducting cylinder and dielectric loss in the DDA structure can be drastically reduced, thereby resulting in both an extremely high quality factor and a very high shunt impedance at room temperature.

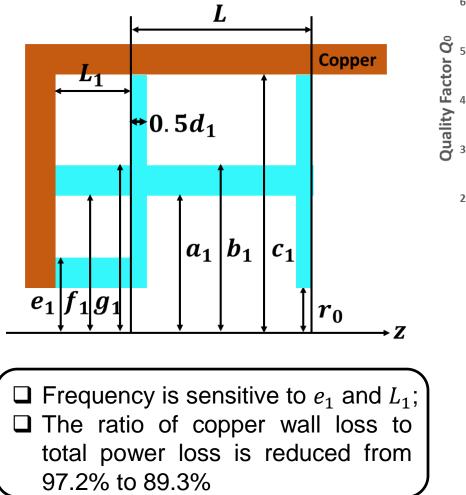
Optimization for a regular cell

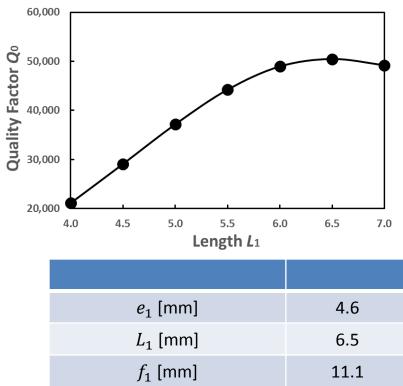

Optimum parameters	
Dielectric constant Er	9.64
Dielectric loss tangent δ	6E-6
Inner radius ro [mm]	3.15
Outer radius c1 [mm]	20.5
a1 [mm]	11.10
b1 [mm]	13.16
d1 [mm]	2.0
Structure period length L [mm]	12.50
Phase advance	180°
Acceleration mode	TM02 π -mode
Frequency [GHz]	11.9969
Unloaded Q 0	134542
<i>r'/Q</i> ₀ [Ω/m]	6089
<i>r</i> ' [MΩ/m]	819

Regular cell with different loss tangent



Dielectric loss tangent δ affects quality factor Q0 and shunt impedance r';
 The highest quality factor and shunt impedance: Q0 = 185000, r' = 1100 MΩ/m
 When loss tangent δ = 1E-5, Q0 = 113733, r' = 693 MΩ/m. This can be achievable from other labs.


Dispersion curve



Regular cell with copper plates

End cell

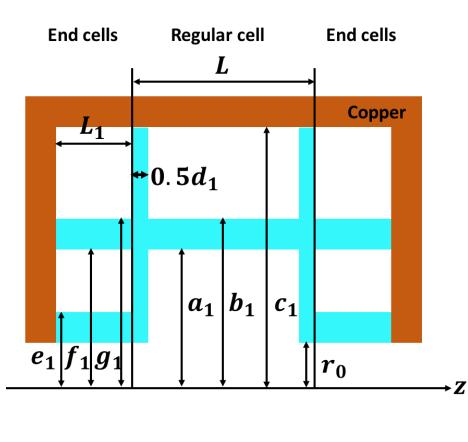
*g*₁ [mm]

Frequency [GHz]

Unloaded Qo

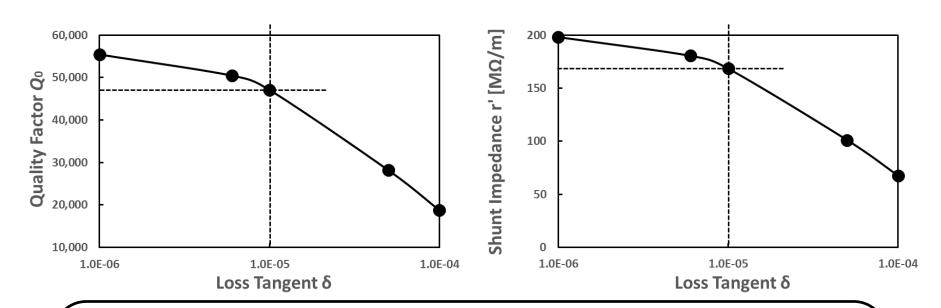
r' [MΩ/m]

CLIC workshop, 21st - 25th January 2019, CERN

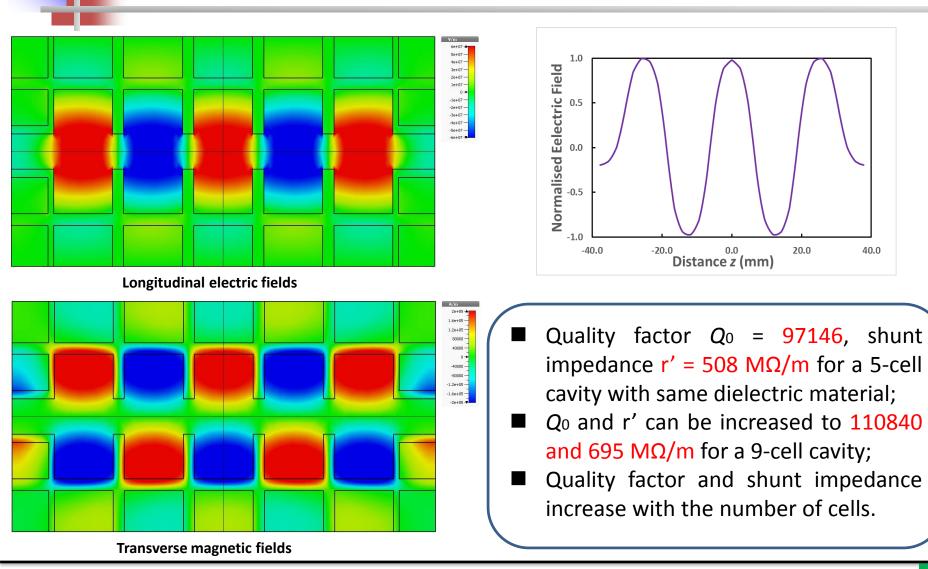

13.16

11.9942

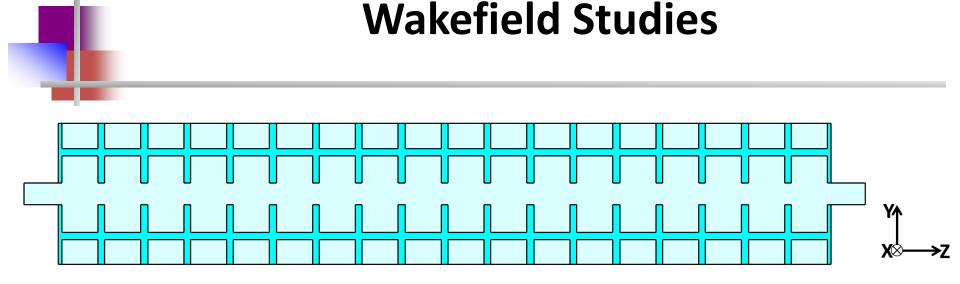
50464

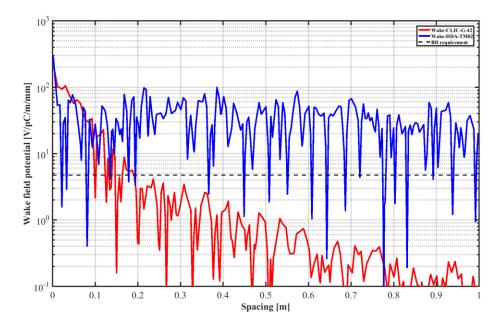

181

Single-cell DDA structure

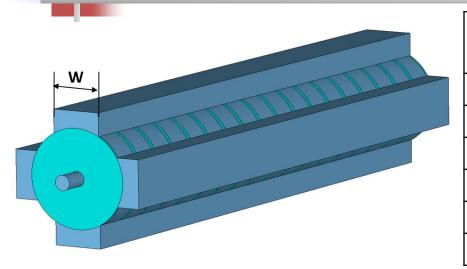

9.64
6E-6
3.15
20.5
11.1
13.16
2.0
4.6
20 °C
TM02 π-mode
11.9942
50464
3578
181

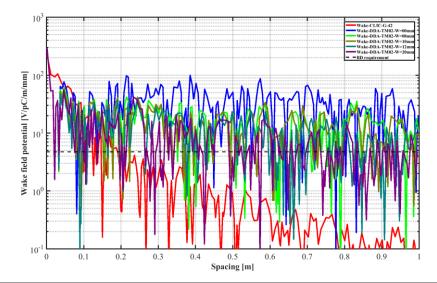
Different loss tangent δ

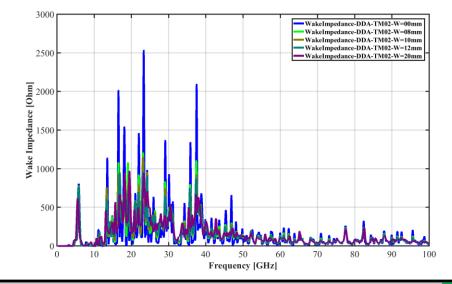

- □ The dielectric loss tangent 6E-6 is really challenging in the reality; It really depends the materials process;
- \Box For a single-cell DDA structure, loss tangent δ is 1E-5, which is achievable from other labs;
- The quality factor is 47093 and shunt impedance is 169 MΩ/m, which are still better than those of CLIC accelerating structures.


Multi-cell DDA structure

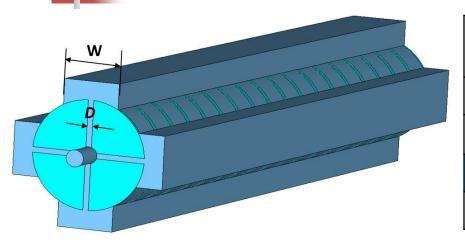
Outline

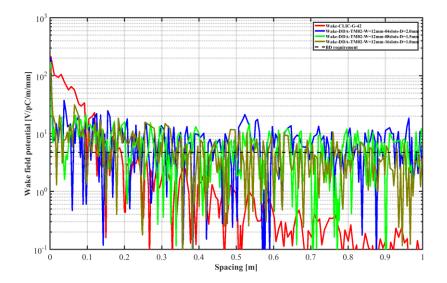

- Background & Introduction
- Dielectric-Lined Accelerating (DLA) Structures
- Dielectric Disk Accelerating (DDA) Structures
 - TM01 operation mode
 - TM02 operation mode
 - Wakefield Studies for a TM02 DDA structure
- Summary & Outlook




CLIC-G: $28*8.333 \leftrightarrow$ DDA TM02- π : 18*12.5, so the number of regular cell is 18, no end cells are included; Gdfild modelling for a DDA TM02- π -mode structure: dx=dy=dz=0.05 mm, bunch charge Q = 1.0 nC, bunch sigma = 1.0 mm, offset = 0.5 mm.

Adding Damping Waveguide


		shunt impedan ce r' [MΩ/m]	7 bunches			Envelope [7 bunches]		
W [mm] quality factor Q ₀			F _c	F _{rms}	F _{worst}	F _c	F _{rms}	F _{worst}
0	134542	819	149	752	5051	4086	2836	19483
8	113810	680	6	37	174	213	149	999
10	103330	612	8	67	408	269	211	1420
12	84336	489	6	26	149	123	101	661
20	< 40000	< 200	15	54	352	40	37	185
BD requirement			< 2	< 5		< 2	< 5	



CLIC workshop, 21st - 25th January 2019, CERN

Adding Dielectric Slots (W=12 mm)

Number of	D[mm] quality	shunt impedan		7 bunche	S	Envelope [7 bunches]			
dielectric slots		· ·		F _c	F _{rms}	F _{worst}	F _c	F _{rms}	F _{worst}
4	2.0	45286	193	2.1	3.5	13.4	12.3	6.2	34.7
8	1.5	95052	457	2.9	4.6	19.5	7.6	5.9	33.6
16	1.0	95450	405	1.1	1.3	2.7	1.9	1.4	4.2
BD requirement					< 2	< 5		< 2	< 5

	The	unloaded	quality	factor	and		
	shun	t impedano	ce are d	ecrease	d by		
30% and 50% respectively;							
	Long	arwakalan	ath (> E	m	da ta		

Longer wakelength (> 5 m) needs to be calculated in order to get accurate F parameters.

Summary and Outlook

- Different DLA structures have been studied at 12 GHz; High group velocity;
- **DDA TM01** π -mode structures: Q₀ = 15392, r'/Q₀ = 9931 Ω/m , r' = 153 M Ω/m ;
- DDA TM02 π-mode structure: $Q_0 = 134542$, r'/ $Q_0 = 6089 \Omega/m$, r' = 819 MΩ/m;
 - The number of acceleration cells can be up to 250 due to high bandwidth;
 - Optimization for a single-cell structure including regular and end cells: Q₀ = 50464, r'/Q₀ = 3578 Ω/m, r' = 181 MΩ/m;
 - Preliminary wakefield studies using damping waveguides and dielectric slots.
- Further optimization and wakefield studies;
- Design of RF high power coupler;
- □ Fabrication and experimental studies.