X-band manufacturing at CERN

Band Prototypes Production On behalf of the team Joel Sauza Bedolla EN/MME/MA

CERN

Summary

- Production status
- Structures
 - T24 G Open (Halves)
 - TD24 R05 SiC
 - Rectangular disc
 - T24R05
 - TD26R1CC
 - TD31
 - Klystron base
 - TD26 Halves
- Components
 - Open Hardware
 - Under development

Structures

T24 G Open (Halves)

CERN

- KLY T24-CLIC-G-Open fabricated by SLAC. High power tested at CERN
- Conditioning: 200ns pulse length for 100 MV/m with BDR of 10⁻⁶ bbp
- Gold-copper (25-75) brazing shim.

TD24 R05 SiC N1

- The gradient of structure was close to 100 MV/m
- Hot cell around 3rd
- SiC damps copper coated
 - During heating cycles? 4 heating cycles with SiC combs out of 10 total cycles
 - During high power test? Sputtering due to breakdowns? More Cu on the tip and near the hot cell

1.49

42.58

32.22

100.00

0.09

0.21

0.20

K series

K series

K series

Cu

Total:

CLIC G bent WG prototype cell

- Rectangular cell
- Prototype for bonding test
 - Bonding successful at 95%. Unfortunately, it leaks.
 - SiC absorbers difficult to be placed. Wrong dimensions

T24R05

X-band Production at CERN						
RF Design		Mechanical design	Manufacturing		Assembly	High Power
Т24	b h a					

- 24 undamped cells
- Weak tapering of the irises
- Ø 45 mm
- Interlock design

T24R05

- To assess the changes on the geometry of the cells before and after bonding
 - Sensitivity analysis of most important parameters
 - Correlation of RF measurements (bead pull measurement) vs mechanical measurements (CMM and optical measurements): b parameter

• Another type of correlation different than linear? Combined effect of more than one factor?

10

T24R05

- Frequency deviation before and after bonding
- Reduction of frequency may indicate a change on the geometry
 - The results are in the range of the accuracy (lack of RF contact) of the beadpull measurements: are we measuring noise?
 - However, disc diameter reduction has been observed in several structures

Diameter after bonding: Not measured Straightness: 15 μm

Average diameter reduction (after bonding): 7 μm Straightness: 30 μm

X-band Production at CERN RF Design Mechanical design Manufacturing Assembly Image: Colspan="3">Image: Colspan="3" Image: C

- 26 tapered cells with integrated coupling cells.
- Design changes:

TD26R1CC

- "Nose" of the waveguide from an elliptical geometry to a 4-th order polynomial function. RF Improvement
- The radius at the bottom of the RF waveguide was increased from 0.5 mm to 1 mm to allow the use of bigger milling cutter. Economic
- Disc diameter was increased from 74 mm to 83 mm. Design

The total fabrication included four structures: 118 discs: the bigge

- The total fabrication included four structures: 118 discs: the biggest amount of discs ever produced in a single order
- The parts were produced by a combination of Ultra-Precision diamond fly cutting, milling and turning

Process Capability Report for Diam 83

0.0030 - Overall Process Data LSL Within Target 0.0025 **Overall Capabilit** USL 83 001 Pp 071 Sample Mean 83,0004 1,03 PPI Sample N 118 StDev(Overall) 0.000468714 PPU 0,39 Ē 0.0020 Ppk StDev(Within) 0.000441307 0,39 Cpm • Potential (Within) Capability 0.0015 Cp 0,76 CPL 1,09 CPU 0,42 Cpk 0,42 £ 0.0010 1001 2398 3002 300° 300° 300° 0.0005 0.0000 Performance Observed Expected Overall PPM < 1SI999,11 514,58 Structure Number PPM Total 106244,28 120697 2

At the beginning of the fabrication the tolerance (disc diameter and flatness) was relaxed from $\pm 1 \ \mu m$ to $\pm 2 \ \mu m$. The process reaches a Cpk = 1.1 thus 14 PPM

TD26R1CC

Boxplot of Flatness plane A

13

r=-0.193

r=-0.59

2.5

3.5

- Same procedure for T24: Sensitivity analysis (b and a), mechanical/optical measurements and frequency deviation before bonding
 - No correlation in N1-N3 structures. Medium correlation in N2-N4

TD26R1CC

TD26R1CC

- Frequency deviation before and after bonding
- Measurements affected by bonding stack straightness
 - Frequency deviation reduction not homogeneous
 - Difficult to tune (after bonding and brazing) structures N2 and N3

Average diameter reduction (after bonding): 13 μm Average straightness: 70 μm

Average diameter reduction (after bonding): 12 μm Average straightness: 50 μm

TD26R1CC

15

- Identical bonding cycles on different days for N1, N2 and N3: 1040 °C 1.5 hours
- Observations:
 - There is a disc diameter reduction in the three structures: average 12 μm
 - There is a difference of diameter between two circles measured on the same disc: average 3 μm
 - There is a difference on height on measured after bonding N1: 25 μm
- Structure N1 will be thoroughly measured to have information about internal geometry changes.

TD31R1CC

- Similar geometry of TD26 (Ø83 mm)
- Production of 138 cells + components
- Confirmed the Cpk with ± 2 μm Tolerance: **0 defectives parts**
- Improvements on transport and handling of parts

Diameter 83 mm

16

Klystron based

- Alternative scenario for 380 GeV
- 75 MV/m accelerating gradient
- It can be easily tested and implemented faster than two-beam modules
- Competitive cost at lower energy
- From the manufacturing point of view similar to TD26 and TD31
 - Smaller irises
 - Smaller height
 - Similar tolerances

TD26 Halves

- New Electron Beam Welding
- Heat treatments are avoided
- There are less components
- Alignment is critical: deformation of rings, due to Herzian contact forces, by a load applied to the halves. Collaboration with Dutch company to define the alignment features

Components

Open Hardware catalogue

Components under development

- Spiral load
 - Optimization for 3D printing
- Travelling Wave X-band RF Window
 - Peak Power 75MW
- Double height WR90 mode converter
 - TE₁₀ (rectangular waveguide) to TE₀₁ (circular waveguide)

CER

Conclusions

- Next structures for tendering:
 - Klystron based structure (production)
 - Halves (production)
 - TD31 (assembly)
 - Repeat bonding test of rectangular disc with similar parts
- Components
 - RF window and mode converter fabrication and testing (in house)
 - Spiral load (in house)
- Structure's internal geometry changes
 - SiC copper coated (TD24 R05 SiC and rectangular disc)
 - Frequency changes (T24 and TD26)
 - External diameter reduction and height changes (T24 and TD26)
 - TD26R1CC measurement will help us to better understand (started)

Thank you for your attention

Nuria Catalan Lasheras

Serge Lebet

Anastasiya Solodko

Kamil Tomasz Szypula

Hikmet Bursali

Enrique Rodriguez Castro

Sergio Gonzalez Anton

Joel Sauza Bedolla

Ready for questions

