

January 22, 2018

In the ATLAS experiment Machine Learning for flavour-tagging

Geoffrey GILLES on behalf of the ATLAS collaboration Bergische Universität Wuppertal

- Heavy-flavour tagging (*b*-tagging) is an important tool for physics analysis
	- Intensively used for signal identification, background suppression
		- → Measurements in top-quark or Higgs-boson sectors, searches for New Physics, etc.

"Where Machine Learning techniques play a central role"

- Outline of this presentation
	- Illustrate some lessons learned from using Machine Learning for flavour-tagging in ATLAS
	- Through three examples
		- Extracting more information from data illustrated by impact parameter based taggers
		- 2. The power of combining information illustrated by secondary vertex finding algorithms
		- 3. State of the art of high-level flavour-tagging algorithms used in ATLAS

BERGISCHE UNIVERSITÄT WUPPERTAL

- Inclusive approach for heavy-flavour jet identification
	- Exploiting specific topology of heavy-flavour jets
		- → *Long lifetime, high mass & decay multiplicity of B/D-hadrons*
	- Performance led by power to separate *b*-, *c* and *light*-jets
	- Using dedicated and complementary algorithms
		- → *With different complexity & performance*

BERGISCHE UNIVERSITÄT **WUPPERTAL**

Beam pipe New LHC run II Insertable B-layer (IBL)

• Tracks

- Tracks-to-jets association based on p_T dependent ΔR selection
- IP resolution determined by first two pixel detector layers → Crucial to distinguish *B*-hadron decay from fragmentation tracks
- Primary and secondary vertex reconstruction also a key ingredient \rightarrow Main challenge due high pile up condition at pp collider

"The cleaner environment at e^+e^- collider is an advantage"

• Jets

- Reconstruction algorithm *→ To deal with different jet environments*
- Direction → *To assign a "lifetime sign" to tracks*
- Exploit physics properties & detector resolutions dependencies

• Leptons

• Used to identify semi-leptonic *B*-hadron decays
• Used to identify semi-leptonic *B*-hadron decays
The Ge

Extracting more information from data Illustrated by Impact Parameter (IP) based taggers

Geoffrey GILLES 6

"IPTag relies on track compatibility with PV but not sensitive to track correlations"

Subleading S_{do} Subleading S

Possibility to capture track correlations using sequence classification in Machine Learning

Geoffrey GILLES **7** 2004 12:00

Sequence Classification & Recurrent Neural Network

b-jets c-jets light-jets

ith track in sequence

ATL-PHYS-PUB-2017-003

 \sqrt{s} =13 TeV, tt \bar{t} p_>20 GeV, $ln|<2.5$

Build sequence of track, imposing physics-inspired ordering

Correlations of per track S_{d0} with NN output

ATLAS Simulation Preliminary

2 4 6 8 10 12 14

Track sequence feeding RNN

Sequence Classification & Recurrent Neural Network

ATL-PHYS-PUB-2017-003

Comparing *b*-tagging performance

ATL-PHYS-PUB-2017-003

"RNNIP more powerful than naïve Bayes model especially for intermediate to high-p_T jets"

BERGISCHE UNIVERSITÄT WUPPERTAL

The power of combining information Illustrated by secondary vertex finding algorithms

Towards displaced vertex reconstruction

- What to expect from secondary vertex finding in Jets?
	- Disentangle high-IP tracks belonging to real verteces from badly reconstructed fragmentation tracks
	- Tracks with low IP parameter can still contribute to a displaced vertex
	- A way reduce number of light-jets faking b-jets considerably

"Complementary to IP-based algorithms"

BERGISCHE

1st step in secondary vertex reconstruction

ATL-PHYS-PUB-2017-011

- SV1: Inclusive displaced 2nd vertex reconstruction
	- Fit tracks from 2-track vertices candidates, discarding tracks from Λ /K⁰s decays, conversions and material interactions
	- extram **A**/K^os decays, conversions and material interactions
• Summarize important vertex infos: decay length, mass, etc.

Decay chain multi-vertex reconstruction

BERGISCHE UNIVERSITÄT **WUPPERTAL**

ATLAS DRAFT

ATL-PHYS-PUB-2018-025

- JetFitter : Exploits topological structure of B/D-hadron decay chain
	- Kalman filter used to find common line through PV, bottom and charm vertices 154 jet energy. The rate of intervention by the SV1 algorithm, in the selected *Z* + *j*
	- Ability to reconstruct vertices even when only a single track connects them $\overline{}$ • Ability to reconstruct vertices even when only a single track connects them
• Summarize important vertex infos: decay length, mass, efc ...
	-

Building a multivariate *b*-tagging algorithm

BERGISCHE UNIVERSITÄT WUPPERTAL

"The amount of combined information is a key ingredient" NB: Even better improvement on light-jet

rejection (c.f. back-up slides)

Geoffrey GILLES **15**

State of the art High-level flavour tagging algorithms

High-level flavour-tagging algorithms in ATLAS

Geoffrey GILLES 17

ATL-PHYS-PUB-2017-013

"Correlation between jet p_T & heavy-hadron p_T is crucial to flavour-tagging performance"

tt events

Above m_t , jet p_T determined by nearby hadronic activity \rightarrow *reducing correlation with b-hadron* p_T

ATL-PHYS-PUB-2017-013

"Correlation between jet p_T & heavy-hadron p_T is crucial to flavour-tagging performance"

Above m_t , jet p_T determined by nearby hadronic activity \rightarrow *reducing correlation with b-hadron* p_T

New strategy developed to probe high-pT regime using broad Z' events

The MV2 Algorithm

ATL-PHYS-PUB-2017-013

"ATLAS Run II reference b-tagging algorithm"

Including Jet p_T / η to take advantage of correlations between input variables → Signal (*b*) reweighted to match background (*c+light*) spectra $X_1 > \theta_1$ $X_3 > \theta_3$ $X_4 \leq \theta_4$ $X_2 \leq \theta_2$ *Leafs Nodes Jet samples Combines baseline tagger outputs using TMVA Boosted Decision Tree (BDT)*

Three main scenarios for *b*-tagging

MV2 = IPTag + SV1 + JetFitter MV2Mu = IPTag + SV1 + JetFitter + SMT MV2MuRNN = IPTag + SV1 + JetFitter + SMT + RNNIP

Optimized BDT parameterization & c-jet fraction to obtain best performance

e.g. MV2MuRNN output discriminant

ATL-PHYS-PUB-2017-013

"Machine Learning exploits complementarity of baseline taggers to extract better performance "

Illustrate how combining information maximalises algorithm performance

Soft-Muon Tagger improves performance at low p_T

RNNIP improve performance at high p_T

High level tagger using Deep Learning

 p_b

 p_c

 p_{light}

"DL1: Deep Feed Forward Neural Network"

Factorises learning of structures in data across many layers

Results in comparable performance

All flavours treated equally during training offering large flexibility

$$
D_{RNN}(b) = \ln \frac{P_b}{f_c \cdot p_c + (1 - f_c) \cdot p_{light}} \quad b\text{-tagging}
$$
\n
$$
D_{RNN}(c) = \ln \frac{P_c}{f_b \cdot p_b + (1 - f_b) \cdot p_{light}} \quad c\text{-tagging}
$$

NB: Trained with Keras with Theano backend & Adam Optimizer

High level tagger using Deep Learning

BERGISCHE UNIVERSITÄT WUPPERTAL

ATL-PHYS-PUB-2017-013

"Powerful flexibility of applications and optimisation"

Final c- and b-jets fractions chosen a posteriori according to desired performance

b-tagging charm-tagging

Conclusions

Conclusions

- Over the years, Machine Learning became essential for flavour tagging
	- Developing a general strategy based on combining complementary information
	- To cope with the complexity of the exercise, going further in improving the performance
- ATLAS exploits five baseline approaches to extract jet flavour information
	- Making use of impact parameter based taggers, 2nd vertex finders, or exploiting soft muons
	- Combined in powerful high-level tagging algorithms used at physics analysis level
	- \rightarrow e.g. BDT based MV2 algorithm
	- Algorithms trained on hybrid $t\bar{t} + Z'$ event sample
	- \rightarrow Topology and kinematics of training samples are important
- Deep Learning technics offer new & powerful paradigm for Machine Learning
	- To extract further information from data as illustrated by RNNIP
	- Offer a large flexibility of applications and optimisation like DL1 compared to MV2

"Keeping in mind that the amount of information exploited drives the performance"

Back up

IP track categories & IP3D log-likelihood ratio

Impact of fragmentation tracks

ATL-PHYS-PUB-2016-012

ATL-PHYS-SLIDE-2017-559

ATL-PHYS-PUB-2018-025

MV2 input variables

ATL-PHYS-PUB-2016-012

