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Introduction

• Heavy-flavour tagging (b-tagging) is an important tool for physics analysis
• Intensively used for signal identification, background suppression

→ Measurements in top-quark or Higgs-boson sectors, searches for New Physics, etc. 

“Where Machine Learning techniques play a central role” 

• Outline of this presentation
•

• Illustrate some lessons learned from using Machine Learning for flavour-tagging in ATLAS

• Through three examples 

1. Extracting more information from data illustrated by impact parameter based taggers
2. The power of combining information illustrated by secondary vertex finding algorithms
3. State of the art of high-level flavour-tagging algorithms used in ATLAS 
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Identifying heavy-flavour jets
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• Inclusive approach for heavy-flavour jet identification
• Exploiting specific topology of heavy-flavour jets

→ Long lifetime, high mass & decay multiplicity of B/D-hadrons

• Performance led by power to separate b-, c- and light-jets

• Using dedicated and complementary algorithms 
→ With different complexity & performance
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Ingredients for b-tagging 

• Tracks
• Tracks-to-jets association based on !" dependent ∆$ selection

• IP resolution determined by first two pixel detector layers

→ Crucial to distinguish B-hadron decay from fragmentation tracks

• Primary and secondary vertex reconstruction also a key ingredient
→ Main challenge due high pile up condition at pp collider 

“The cleaner environment at %&%' collider is an advantage”

• Jets
• Reconstruction algorithm → To deal with different jet environments
• Direction → To assign a “lifetime sign” to tracks
• Exploit physics properties & detector resolutions dependencies

• Leptons
• Used to identify semi-leptonic B-hadron decays  [GeV]
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Extracting more information from data
Illustrated by Impact Parameter (IP) based taggers 
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Impact parameter based tagger 

• IP[2/3]D: Uses d0/z0 impact parameter significances
• Track categorization based on pixel hit patterns 
• Likelihood ratios between b-, c- and light-jet hypothesis 

computed as sum of per-track log probabilities

IP significances
Tell you if a track is compatible 
with PV. Simple and very powerful
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Impact parameter based tagger 

“IPTag relies on track compatibility with PV but not sensitive to track correlations”
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Sequence Classification & Recurrent Neural Network

Exploit kinematic 
information

Track sequence 
feeding RNN 

ATL-PHYS-PUB-2017-003

Build sequence of track, imposing 
physics-inspired ordering 
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Exploit kinematic 
information

Flavour-tagging probability 
outputs combined into 
discriminating function

!"## $ = ln ()
*+,+ + *.,. + 1 − *+ − *. ,12345

with   *+ = 0.07 and *. = 0

ATL-PHYS-PUB-2017-003

Analyse sequence using 
Recurrent Neural Network (RNN)

Track sequence 
feeding RNN 

Sequence Classification & Recurrent Neural Network
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Comparing b-tagging performance
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“RNNIP more powerful than naïve Bayes model especially for intermediate to high-pT jets”



1111Geoffrey GILLES

The power of combining information
Illustrated by secondary vertex finding algorithms 
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Towards displaced vertex reconstruction

• What to expect from secondary vertex finding in Jets?
• Disentangle high-IP tracks belonging to real verteces from badly 

reconstructed fragmentation tracks
• Tracks with low IP parameter can still contribute to a displaced vertex

• A way reduce number of light-jets faking b-jets considerably

Interaction
point

Pixel layers

Hadronic 
interactions

K0s,Λ decays 

γ→ e+e-

Tracks from 
fragmentation

Typical topology in light-jets

⚠ There are also real vertices in light-jets ! 
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1st step in secondary vertex reconstruction

• SV1: Inclusive displaced  2nd vertex reconstruction
• Fit tracks from 2-track vertices candidates, discarding tracks 

from Λ/K0s decays, conversions and material interactions

• Summarize important vertex infos: decay length, mass, etc. Je
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Decay chain multi-vertex reconstruction 

• JetFitter : Exploits topological structure of B/D-hadron decay chain
• Kalman filter used to find common line through PV, bottom and charm vertices 
• Ability to reconstruct vertices even when only a single  track connects them
• Summarize important vertex infos: decay length, mass, efc … Je
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A difficulty at pp colliders but less at !"!# colliders

ATLAS DRAFT

jet energy. The rate of jets tagged by the SV1 algorithm, in the selected Z + jets-dominated sample and154

tt̄-dominated eµ sample is summarised in Table 1.155

3.2 Topological Multi-Vertex Algorithm (JetFitter)156

JetFitter is an inclusive vertex algorithm that reconstructs the topological vertex structure of heavy157

hadron decays inside a jet. The topological algorithm is based on a modified Kalman Filter. It uses158

the intercepts of the particle tracks with the jet axis in order to reconstruct the full decay topology, also159

including single-prong vertices. Several improvements have been introduced in the current version of the160

JetFitter algorithm to increase the e�ciency for tertiary vertex reconstruction and to mitigate the e�ect161

of pile-up tracks. Eight discriminating variables, including the track multiplicity at the JetFitter vertex,162

the mass of the vertex, its energy fraction and the three-dimensional decay significance, are used as inputs163

to the high-level taggers. The rate of jets being tagged by the JetFitter algorithm, in the selected Z +164

jets-dominated sample and tt̄-dominated eµ sample is summarised in Table 1.165

Tagger (tt̄) Rate in MC
SV1 0.187±0.001

JF secondary vertex 0.217±0.001
JF tertiary vertex 0.0504±0.0005

Table 1: Reconstruction rates for the SV1 and the JetFitter algorithms for Z + jets-dominated sample (first set) and
for tt̄-dominated eµ sample (second set). Only multi-prong vertices have been taken into account for the JetFitter
algorithm and the quoted uncertanties are statistical.

4 Algorithm training samples166

Previous versions of the ATLAS multivariate-based taggers were trained using tt̄ samples [3]. The jet167

pT distribution of this sample is steeply falling, making the number of events with jets above 250 GeV168

insu�cient for an e�ective training. This resulted in sub-optimal performance in the medium-to-high pT169

range. A broad Z 0 sample enhances the jet population in the kinematic region not accessible when training170

on a tt̄ sample. Figure 9 shows the pT distributions for b- and light-flavour jets in the tt̄ and Z 0 samples.171

The relation between the pT and energy of the jet to those of the original b-quark and hadron is key for172

understanding the flavour tagging response as a function of the jet pT. In tt̄ events the b-jets originate173

from a relatively low-mass (mt ) state. This results in small pT transferred to the heavy b-hadron. This174

leads to a correlation between jet pT and heavy hadron pT for pT . mt . For jet pT & mt , the jet transverse175

momentum is determined by nearby hadronic activity unrelated to the heavy hadron and the correlation is176

therefore reduced. Instead, b-hadrons produced in the broad Z 0 decays with large pT yield a high degree177

of correlation with the jet pT. It is important to ensure that the training of the flavour taggers covers both178

of these regimes.179

A new training strategy has been employed using a sample made both of tt̄ events, to characterise the180

low pT region, and broad Z 0 events, to probe the high pT regime. This new sample, referred to as the181

hybrid sample in the following, is obtained by including b-jets from tt̄ if the corresponding b-hadron182

pT <250 GeV and from the Z 0 sample if the b-hadron pT >250 GeV. For c- and light-flavour jets, the same183

mixing strategy is applied, moving from tt̄ events to Z 0 events for values of the jet pT above 250 GeV.184
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Building a multivariate b-tagging algorithm
ATL-PHYS-PUB-2018-025

Input Variable Description

Kinematics
pT Jet pT
⌘ Jet |⌘|

Reduced

m Invariant mass of tracks from displaced vertices
fE Fraction of the charged jet energy in the secondary vertices

�R(~pjet, ~pvtx) �R between jet axis and vectorial sum of momenta of all tracks attached to displaced vertices
Sxyz Significance of average distance between PV and displaced vertices

NTrkAtVtx Number of tracks from multi-prong displaced vertices

Baseline
above variables +

N2TrkVtx Number of 2-track vertex candidates (prior to decay chain fit)
N1-trk vertices Number of single-prong displaced vertices
N�2-trk vertices Number of multi-prong displaced vertices

Full

above variables +

Lxyz(2
nd/3rdvtx) Distance of 2nd or 3nd vertex from PV

Lxy(2
nd/3rdvtx) Transverse displacement of the 2nd or 3nd vertex

mTrk(2
nd/3rdvtx) Invariant mass of tracks associated to 2nd or 3nd vertex
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nd/3rdvtx) Energy of charged tracks associated to 2nd or 3nd vertex

fE(2
nd/3rdvtx) Fraction of charged jet energy in 2nd or 3nd vertex

NTrkAtVtx(2
nd/3rdvtx) Number of tracks associated to 2nd or 3nd vertex
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e.g. Combining JetFitter algorithm outputs using  
TMVA Boosted Decision Trees  (BDT)

“The amount of combined information is a key ingredient” NB: Even better improvement on light-jet 
rejection (c.f. back-up slides)
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State of the art 
High-level flavour tagging algorithms
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High-level flavour-tagging algorithms in ATLAS 

SV1
Inclusive secondary 

vertex reconstruction

IP2D/IP3D
IP based taggers 

JetFitter
Topological b-hadron 
decay reconstruction

☞ IPRNN 
Recurrent NN on track 

parameters

☞ SMT
Semi-leptonic decays 

to muons

☞ MV2 /  ☞ DL1
High level combinations using 

BDT / Deep NN
for b- and c-tagging

☞ Using MVA

Hybrid training
Exploit jets from ! ̅! and 
broad #$ → &'&, ) ̅), *'*

ATL-PHYS-PUB-2017-013
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Hybrid training sample

”Correlation between jet !" & heavy-hadron !" is crucial to flavour-tagging performance”  

ATL-PHYS-PUB-2017-013
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Hybrid training sample

”Correlation between jet !" & heavy-hadron !" is crucial to flavour-tagging performance”  

New strategy developed to probe 
high-pT regime using broad Z’ events   

ATL-PHYS-PUB-2017-013

Above #$, jet !" determined by nearby hadronic activity 
→ reducing correlation with b-hadron pT
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The MV2 Algorithm 

Including Jet !" / # to take advantage of correlations between input variables
→ Signal (b) reweighted to match background (c+light) spectra

Three main scenarios for b-tagging
MV2 = IPTag + SV1 + JetFitter
MV2Mu = IPTag + SV1 + JetFitter + SMT
MV2MuRNN = IPTag + SV1 + JetFitter + SMT + RNNIP
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”ATLAS Run II reference b-tagging algorithm”  

Optimized BDT parameterization & c-jet fraction to obtain best performance

e.g. MV2MuRNN output discriminant 

ATL-PHYS-PUB-2017-013

Combines baseline tagger outputs using 
TMVA Boosted Decision Tree (BDT)
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The MV2 Algorithm 

”Machine Learning exploits complementarity of baseline taggers to extract better performance ”  

Illustrate how combining information 
maximalises algorithm performance 
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High level tagger using Deep Learning

!"
!#
!$%&'(

Factorises learning of structures in 
data across many layers 

Multidimensional outputs combined  
into discriminating functions

)*++ , = ln 0"
1# 2 !# + 1 − 1# 2 !$%&'(

)*++ 6 = ln 0#
1" 2 !" + 1 − 1" 2 !$%&'(

b-tagging

c-tagging

”DL1: Deep Feed Forward Neural Network”  

Same input information 
as in MV2 

Results in comparable 
performance 

All flavours treated equally during 
training offering large flexibility 

ATL-PHYS-PUB-2017-013

NB: Trained with Keras with Theano backend & Adam Optimizer
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High level tagger using Deep Learning
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”Powerful flexibility of applications and optimisation”  

Final c- and b-jets fractions chosen a posteriori according to desired performance 

b-tagging charm-tagging
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Conclusions
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Conclusions

• Over the years, Machine Learning became essential for flavour tagging
• Developing a general strategy based on combining complementary information 
• To cope with the complexity of the exercise, going further in improving the performance

• ATLAS exploits five baseline approaches to extract jet flavour information
• Making use of impact parameter based taggers,  2nd vertex finders, or exploiting soft muons  
• Combined in powerful high-level tagging algorithms used at physics analysis level
→ e.g. BDT based MV2 algorithm

• Algorithms trained on hybrid " ̅" + %′ event sample
→ Topology and kinematics of training samples are important

• Deep Learning technics offer new & powerful paradigm for Machine Learning 
• To extract further information from data as illustrated by RNNIP 
• Offer a large flexibility of applications and optimisation like DL1 compared to MV2

”Keeping in mind that the amount of information exploited drives the performance”  
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Back up 
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IP track categories & IP3D log-likelihood ratio
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Impact of fragmentation tracks
ATL-PHYS-PUB-2016-012
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The JetFitter Algorithm 
ATL-PHYS-SLIDE-2017-559
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Performance of JetFitter BDT discriminant 
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MV2 input variables
ATL-PHYS-PUB-2016-012


