Development of Reconstruction Methods by CALICE

Frank Simon Max-Planck-Institute for Physics

> **CLIC** Workshop CERN, January 2019

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline

- Introduction: Energy reconstruction in calorimeters
- Software compensation: Improving hadronic energy reconstruction
- Towards more complex techniques
- Outlook

Introduction

Energy Reconstruction in Calorimeters

 Energy reconstruction is the key task of HEP calorimeter systems for electromagnetic and hadronic particles

• The (somewhat naive) assumption: signals seen in active detector elements is a energy- and particle type - independent fraction of the particle energy:

to particle energy a minimal requirement - with more sophistication possible & useful

• In practice: Particle-type and possible energy dependent "calibration" of conversion of visible energy

... and Handles to improve it

• The energy resolution for hadronic showers typically is relatively poor:

prompt energy depositions only

active elements see a \sim constant fraction of shower energy cm-component nponents У had component

"invisible" energy due to binding energy losses delayed & displaced energy deposits due to neutrons

. . .

Frank Simon (fsimon@mpp.mpg.de)

4

... and Handles to improve it

• The energy resolution for hadronic showers typically is relatively poor:

prompt energy depositions only active elements see a \sim constant fraction of shower energy cm-component typically: larger response for em showers than for hadronic showers: e/h > 1 => non-compensatingomponents ス had component

"invisible" energy due to binding energy losses delayed & displaced energy deposits due to neutrons

. . .

... and Handles to improve it

• The energy resolution for hadronic showers typically is relatively poor: measurements 10-GeV electron prompt energy depositions only 10-GeV π⁺⁽⁻⁾ active elements see a \sim constant fraction of shower energy б Contribution cm-component Number due to e.m. typically: component larger response for em showers 10 2 6 8 than for hadronic showers: Signal (in energy units) obtained for a 10 GeV energy deposit e/h > 1 => non-compensatingThe path to a better energy resolution: omponents ス had component provided by *Dual Readout*

"invisible" energy due to binding energy losses delayed & displaced energy deposits due to neutrons

. . .

- Compensating calorimeters: Highest potential
- Software compensation / offline weighting: Shower-by-shower energy corrections, profits from high granularity

... and Handles to improve it

• The energy resolution for hadronic showers typically is relatively poor:

prompt energy depositions only 10-GeV π⁺⁽⁻⁾ active elements see a \sim constant fraction of shower energy б Contribution cm-component due to e.m. Numbe typically: component larger response for em showers 2 6 8 than for hadronic showers: e/h > 1 => non-compensatingThe path to a better energy resolution: omponents ス had component provided by *Dual Readout*

"invisible" energy due to binding energy losses delayed & displaced energy deposits due to neutrons

. . .

Compensating calorimeters: Highest potential

Software compensation / offline weighting: Shower-by-shower energy corrections, profits from high granularity

Granularity & Prototypes

• Granularity motivated by shower physics:

Calorimeter voxel size given by X₀, $\rho_M = > \sim (5 \text{ mm})^3 - (30 \text{ mm})^3$

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

Granularity & Prototypes

• Granularity motivated by shower physics:

Calorimeter voxel size given by $X_0, \rho_M = > \sim (5 \text{ mm})^3 - (30 \text{ mm})^3$

- Consequences for the Calorimeter Systems:
- → O 10⁷⁻⁸ cells in HCAL, 10⁸ cells in ECAL for typical detector systems!
 - (compared to a few 10k 100k for current LHC detectors)
- requires active elements that support high granularity and large channel counts
- need technical solutions amenable to mass production & automatisation

Granularity & Prototypes

• Granularity motivated by shower physics:

Calorimeter voxel size given by X₀, $\rho_M = > \sim (5 \text{ mm})^3 - (30 \text{ mm})^3$

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

- Consequences for the Calorimeter Systems:
- → O 10⁷⁻⁸ cells in HCAL, 10⁸ cells in ECAL for typical detector systems!
 - (compared to a few 10k 100k for current LHC detectors)
- → fully integrated electronics needed
- requires active elements that support high granularity and large channel counts
- need technical solutions amenable to mass production & automatisation

- Developed and studied in CALICE
- Principles, performance, technological feasibility
- and scalability demonstrated in the last 12 years

Readout Schemes

• Depending on active detector technology and granularity, different readout schemes are used:

Active elements:

Silicon pixel detectors

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

Silicon pad detectors

$$E_{\rm reco} = \alpha N_1 + \beta N_2 + \gamma N_3$$

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

Energy Reconstruction in

Different Techniques to improve the Energy Resolution with Analog Readout

reconstruction techniques. Two main strategies for software compensation studied:

• Full analog energy information in each cell of the AHCAL provides different handles to implement energy

Different Techniques to improve the Energy Resolution with Analog Readout

reconstruction techniques. Two main strategies for software compensation studied:

Global

 Event-by-event correction of energy sum with a shower-dependent *global* factor

correction based on c_{global}, given by

$$c_{global} = \frac{N_{hits}(E_{hit} < e_{lim})}{N_{hits}(E_{hit} < \langle E_{hit} \rangle)}$$

with an additional energy dependence of the correction factor

 $e_{lim} = 5 MIP$

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

• Full analog energy information in each cell of the AHCAL provides different handles to implement energy

Different Techniques to improve the Energy Resolution with Analog Readout

reconstruction techniques. Two main strategies for software compensation studied:

Global

 Event-by-event correction of energy sum with a shower-dependent global factor

correction based on c_{global}, given by

$$c_{global} = \frac{N_{hits}(E_{hit} < e_{lim})}{N_{hits}(E_{hit} < \langle E_{hit} \rangle)}$$

with an additional energy dependence of the correction factor

 $e_{lim} = 5 MIP$

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

• Full analog energy information in each cell of the AHCAL provides different handles to implement energy

Local

Cell-by-cell correction of energy with energy-density dependent weights entries CALICE (a) additional parametrisation for 10⁵ energy dependence of the weights, separate 10⁴ weights for each energy-density bin 10^{3} 10 15 20 25 30 35 40 5 45 energy density [GeV/(1000 cm³)]

Different Techniques to improve the Energy Resolution with Analog Readout

reconstruction techniques. Two main strategies for software compensation studied:

Global

 Event-by-event correction of energy sum with a shower-dependent global factor

correction based on c_{global}, given by

$$c_{global} = \frac{N_{hits}(E_{hit} < e_{lim})}{N_{hits}(E_{hit} < \langle E_{hit} \rangle)}$$

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

• Full analog energy information in each cell of the AHCAL provides different handles to implement energy

For both: Parameters / weights determined by χ^2 minimisation of energy resolution

Software Compensation in the AHCAL

Comparing Local and Global SC

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

Substantial improvement of energy resolution with SC

Software Compensation in the AHCAL

Comparing Local and Global SC

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

 Substantial improvement of energy resolution with SC Local SC slightly better improvement - in excess of

Software Compensation in the W-AHCAL

Global Software Compensation

- The CALICE W-AHCAL is close to compensating leaves little handle for software compensation techniques
- → Tested with global SC (local SC in progress)

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

Extension to Combined ECAL/HCAL Systems One Example: SiW ECAL + Scintillator / Fe HCAL

- Studying energy resolution in a "real-world" setting: A combined system of SiW ECAL, Scintillator/FE HCAL, Tail Catcher
 - A combination of non-compensating systems with different active and absorber materials and varying longitudinal sampling
- Local software compensation extended by subsystem-dependen binning and weight parameter

ECAL (30 layers): Absorber: W; 1.4 mm, 2.8 mm, 4.2 mm Active: Si; 525 µm HCAL (38 layers) / TCMT (8+8 layers): Absorber: Steel; ~ 21 mm (including cassettes) Active: Plastic scintillator; 5 mm

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

The Implementation

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

• Separate treatment of incoming track up to first interaction: calibration factor different than that for showers • Digital weighting for first two bins: Slight advantage for

energy resolution due to suppression of Landau fluctuations

The Implementation

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

• Separate treatment of incoming track up to first interaction: calibration factor different than that for showers • Digital weighting for first two bins: Slight advantage for

energy resolution due to suppression of Landau fluctuations

Resulting Performance

- Substantial improvement in energy resolution:
 - SC in ECAL alone up to 8% improvement
 - SC in HCAL alone up to 23% improvement
 - Full SC up to 30% improvement, for a stochastic term of 42.5% and a constant term of 2.5%
 - \Rightarrow The bulk of the improvement is achieved in the AHCAL

Resulting Performance

Combining Software Compensation with Particle Flow

Local Software Compensation in PandoraPFA

- Particle flow algorithms make use of calorimeter energy at two main points
 - Track calorimeter cluster matching, and iterative reclustering
 - Energy of neutral particles

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

14

Combining Software Compensation with Particle Flow

Local Software Compensation in PandoraPFA

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

Combining Software Compensation with Particle Flow

Local Software Compensation in PandoraPFA

Energy Reconstruction & Readout Schemes

Understanding Resolution Impact of Granularity & Readout Technology

- CALICE hadron calorimeters use different schemes for energy reconstruction - depending on readout technology:
 - *scintillator*: analog & software compensation
 - gas: digital (1 bit), semi-digital (2 bit)

N.B.: Semi-digital reconstruction and software compensation are related: both use optimised hit or energy dependent weighting factors

• Different schemes tested on AHCAL data (3 x 3 cm² granularity)

Energy Reconstruction & Readout Schemes

Understanding Resolution Impact of Granularity & Readout Technology

- CALICE hadron calorimeters use different schemes for energy reconstruction - depending on readout technology:
 - *scintillator*: analog & software compensation
 - gas: digital (1 bit), semi-digital (2 bit)

N.B.: Semi-digital reconstruction and software compensation are related: both use optimised hit or energy dependent weighting factors

- Different schemes tested on AHCAL data (3 x 3 cm² granularity)
- Simulations used to study 1 x 1 cm² granularity (scintillator)
 - Digital & fine granularity best at low energy: Suppression of fluctuations
 - SC & semi-digital comparable NB: Sampling fraction matters: Semi-digital reconstruction in RPCs does not reach the same resolution

Initial Studies with Neural Networks

- Performed with AHCAL physics prototype in 2010 (K. Seidel, FS) The strategy:
 - Use "simple" clustering to define a set of shower variables
 - Train a neural network on MC data (NB: quasi-continuous) energy distribution to avoid bias)
 - Apply NN to data (requires additional energy correction to account for differences between data and MC)

Initial Studies with Neural Networks

- The strategy:

 - energy distribution to avoid bias)
 - account for differences between data and MC)

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

Frank Simon (fsimon@mpp.mpg.de)

16

Initial Studies with Neural Networks

- The strategy:

 - energy distribution to avoid bias)
 - account for differences between data and MC)

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

Frank Simon (fsimon@mpp.mpg.de)

16

Initial Studies with Neural Networks

- Performed with AHCAL physics prototype in 2010 (K. Seidel, FS) The strategy:
 - Use "simple" clustering to define a set of shower variables
 - Train a neural network on MC data (NB: quasi-continuous) energy distribution to avoid bias)
 - Apply NN to data (requires additional energy correction to account for differences between data and MC)

Simple weighting using energy density only with parametrized weights from MC: ~ 15% improvement

Initial Studies with Neural Networks

- Performed with AHCAL physics prototype in 2010 (K. Seidel, FS) The strategy:
 - Use "simple" clustering to define a set of shower variables
 - Train a neural network on MC data (NB: quasi-continuous) energy distribution to avoid bias)
 - Apply NN to data (requires additional energy correction to account for differences between data and MC)

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

Simple weighting using energy density only with parametrized weights from MC: ~ 15% improvement

NN: up to 25% improvement

Machine Learning & Timing Information

- New prototypes (and full detectors) will offer ns-level timing on the cell level
 - Obvious benefits for pattern recognition & background rejection
 - Benefits for energy resolution?

Simulation study for AHCAL prototype

C. Graf, work in progress

vel timing on the cell level ground rejection

Machine Learning & Timing Information

- New prototypes (and full detectors) will offer ns-level timing on the cell level
 - Ohvious henefits for nattern recognition & background rejection

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

C. Graf, work in progress

vel timing on the cell level ground rejection

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

Summary & Outlook

- Hadronic energy reconstruction in calorimeters is a challenge and a limiting factor for overall detector performance
- Highly granular calorimeters provide detailed information on the shower substructure on an event-by-event level that can be use to improve the energy reconstruction & resolution: Used in Software Compensation
- Different techniques developed and studied in CALICE with test beam data: Global and local software compensation, semi-digital reconstruction, global software compensation with neural networks
 - Successfully applied to single detectors and combined ECAL and HCAL systems with typical resolution improvement of 20% - 30% for pions with energies above ~ 15 GeV
 - Implemented in PandoraPFA for the AHCAL
- Substantial potential for further improvement: Addition of new variables (time), more sophisticated machine learning techniques, extension to electromagnetic showers, ...

19

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

CALICE Technologies

A wide range of prototypes

• A rich test beam program, with a variety of different prototypes

Electromagnetic - Tungsten absorbers

analog: Silicon and Scintillator/SiPM

digital: Silicon (MAPS)

39 Mpixels in 160 cm²

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

Hadronic - Steel and Tungsten absorbers

analog: Scintillator/SiPM (Fe and W)

(Semi)digital: RPCs (Fe, W digital only)

+ few-layer SD prototype with Micromegas

Frank Simon (fsimon@mpp.mpg.de)

21

CALICE Prototypes

Evolution with Time

Physics Prototypes

SiW ECAL

2005

ScintW ECAL

2010

2007 2008 2006

AHCAL

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

digital reconstruction: Saturation effects become relevant

• At energies above 30 GeV semi-digital reconstruction provides a substantial performance advantage wrt

23

Comined ECAL/HCAL Software Compensation

Linearity & Resolution Improvement

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

24

Software Compensation with Neural Networks

CALICE AHCAL: Linearity

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

Performance of Highly Granular Calorimeters

Energy resolution - Electromagnetic

[N.B. Detector optimized for particle separation, not single particle resolution] Scintillator-Tungsten ECAL:

Energy Reconstruction in CALICE - CLIC Workshop, January 2019

Calorimeters

semi-digital (RPCs)

Frank Simon (fsimon@mpp.mpg.de)

27