$+$ - C **Development of Reconstruction Methods by CALICE**

Frank Simon Max-Planck-Institute for Physics

> *CLIC Workshop CERN, January 2019*

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline

- Introduction: Energy reconstruction in calorimeters
- Software compensation: Improving hadronic energy reconstruction
- Towards more complex techniques
- Outlook

Introduction

• The (somewhat naive) assumption: signals seen in active detector elements is a energy- and particle type - independent fraction of the particle energy:

$$
E_{reco} = C_{cellib} \times \sum E_{cluster/fowv/h}
$$

Energy Reconstruction in Calorimeters

• Energy reconstruction is the key task of HEP calorimeter systems for electromagnetic and hadronic particles

• In practice: Particle-type and possible energy dependent "calibration" of conversion of visible energy

to particle energy a minimal requirement - *with more sophistication possible & useful*

4

… and Handles to improve it

• The energy resolution for hadronic showers typically is relatively poor:

"invisible" energy due to binding energy losses delayed & displaced energy deposits due to neutrons

…

prompt energy depositions only

active elements see $a \sim$ constant fraction of shower energy cm - component omponents λ had component

prompt energy depositions only active elements see $a \sim$ constant fraction of shower energy cm - component *typically*: larger response for em showers than for hadronic showers: $e/h > 1 \Rightarrow$ non-compensating omponents λ had. component

… and Handles to improve it

• The energy resolution for hadronic showers typically is relatively poor:

"invisible" energy due to binding energy losses delayed & displaced energy deposits due to neutrons

…

… and Handles to improve it

"invisible" energy due to binding energy losses delayed & displaced energy deposits due to neutrons

• The energy resolution for hadronic showers typically is relatively poor: measurements 10-GeV electron prompt energy depositions only 10-GeV $\pi^{+()}$ active elements see $a \sim$ constant fraction of shower energy ð Contribution cm - component Number due to e.m. *typically*: component larger response for em showers $\overline{2}$ 6 8 10 than for hadronic showers: Signal (in energy units) obtained for a 10 GeV energy deposit $e/h > 1 \Rightarrow$ non-compensating The path to a better energy resolution: omponents λ had. Component provided by *Dual Readout*

…

- \Rightarrow Compensating calorimeters: Highest potential
- ➫ *Software compensation* / offline weighting: Shower-by-shower energy corrections, profits from high granularity

… and Handles to improve it

"invisible" energy due to binding energy losses delayed & displaced energy deposits due to neutrons

• The energy resolution for hadronic showers typically is relatively poor: measurements 10-GeV electron prompt energy depositions only 10-GeV $\pi^{+(-)}$ active elements see $a \sim$ constant fraction of shower energy $\overline{\sigma}$ Contribution cm - component due to e.m. Numbe *typically*: component larger response for em showers 6 8 10 $\overline{2}$ than for hadronic showers: Signal (in energy units) obtained for a 10 GeV energy deposit $e/h > 1 \Rightarrow$ non-compensating The path to a better energy resolution: omponents λ \Rightarrow Compensating calorimeters: Highest potential had. Component provided by *Dual Readout*

…

➫ *Software compensation* / offline weighting: Shower-by-shower energy corrections, profits from high granularity

Calorimeter voxel size given by X_0 , $\rho_M \implies \sim (5 \text{ mm})^3 - (30 \text{ mm})^3$

Energy Reconstruction in CALICE - *CLIC Workshop, January 2019* Frank Simon (fsimon@mpp.mpg.de)

CALICE Calorimeters

• Granularity motivated by shower physics:

Granularity & Prototypes

Calorimeter voxel size given by X_0 , $\rho_M \Rightarrow \sim (5 \text{ mm})^3 - (30 \text{ mm})^3$

CALICE Calorimeters

• Granularity motivated by shower physics:

Granularity & Prototypes

- *Consequences for the Calorimeter Systems:*
- ➫ *O* 107-8 cells in HCAL, 108 cells in ECAL for typical detector systems!
	- (compared to a few 10k 100k for current LHC detectors)
- \Rightarrow fully integrated electronics needed
- \Rightarrow requires active elements that support high granularity and large channel counts
- \Rightarrow need technical solutions amenable to mass production & automatisation

Calorimeter voxel size given by X_0 , $\rho_M \Rightarrow \sim (5 \text{ mm})^3 - (30 \text{ mm})^3$

Energy Reconstruction in CALICE - *CLIC Workshop, January 2019* Frank Simon (fsimon@mpp.mpg.de)

CALICE Calorimeters

• Granularity motivated by shower physics:

Granularity & Prototypes

- *Consequences for the Calorimeter Systems:*
- ➫ *O* 107-8 cells in HCAL, 108 cells in ECAL for typical detector systems!
	- (compared to a few 10k 100k for current LHC detectors)
- \Rightarrow fully integrated electronics needed
- \Rightarrow requires active elements that support high granularity and large channel counts
- \Rightarrow need technical solutions amenable to mass production & automatisation

- Developed and studied in CALICE
- Principles, performance, technological feasibility
- and scalability demonstrated in the last 12 years

CALICE Calorimeters

• Depending on active detector technology and granularity, different readout schemes are used:

Readout Schemes

Silicon pixel detectors

Energy Reconstruction in CALICE - *CLIC Workshop, January 2019* Frank Simon (fsimon@mpp.mpg.de)

Silicon pad detectors

Energy Reconstruction in CALICE - CLIC Workshop, January 2019 Frank Simon (fsimon@mpp.mpg.de) **Energy Reconstruction in CALICE -** CLIC Workshop, January 2019

$$
E_{\rm reco} = \alpha N_1 + \beta N_2 + \gamma N_3
$$

Energy Reconstruction in all color triangles indication of the intervals with red color triangles in the interval

Energy Reconstruction in \Box COMIC VI Frank Simon (fsimon@mpp.mpg.de) obtained with the binary mode for energies higher than 30 GeV. Figure 20. Mean reconstruction showers as a function shower property for property $\frac{1}{2}$

H6 runs

H2 runs

• Full analog energy information in each cell of the AHCAL provides different handles to implement energy

reconstruction techniques. Two main strategies for software compensation studied:

Different Techniques to improve the Energy Resolution with Analog Readout

• Full analog energy information in each cell of the AHCAL provides different handles to implement energy

reconstruction techniques. Two main strategies for software compensation studied:

Different Techniques to improve the Energy Resolution with Analog Readout

Global

• Event-by-event correction of energy sum with a shower-dependent *global* factor

correction based on cglobal, given by

$$
c_{global} = \frac{N_{hits}(E_{hit} < e_{lim})}{N_{hits}(E_{hit} < \langle E_{hit} \rangle)}
$$

with an additional energy dependence of the correction factor

 $e_{lim} = 5$ MIP

• Full analog energy information in each cell of the AHCAL provides different handles to implement energy

reconstruction techniques. Two main strategies for software compensation studied:

Different Techniques to improve the Energy Resolution with Analog Readout

Global

• Event-by-event correction of energy sum with a shower-dependent *global* factor

correction based on cglobal, given by

$$
c_{global} = \frac{N_{hits}(E_{hit} < e_{lim})}{N_{hits}(E_{hit} < \langle E_{hit} \rangle)}
$$

with an additional energy dependence of the correction factor

 $e_{lim} = 5$ MIP

Energy Reconstruction in CALICE - *CLIC Workshop, January 2019* Frank Simon (fsimon@mpp.mpg.de)

Local

additional parametrisation for energy dependence of the weights, separate weights for each energy-density bin

• Cell-by-cell correction of energy with energy-density dependent *weights* energy density [GeV/(1000 cm³)] 0 5 10 15 20 25 30 35 40 45 entries 10^3 $10⁴$ 10^{5} $10⁶$ 0 5 10 15 20 25 30 35 40 45 **(a) CALICE**

• Full analog energy information in each cell of the AHCAL provides different handles to implement energy

reconstruction techniques. Two main strategies for software compensation studied:

Different Techniques to improve the Energy Resolution with Analog Readout

Global

• Event-by-event correction of energy sum with a shower-dependent *global* factor

correction based on cglobal, given by

$$
c_{global} = \frac{N_{hits}(E_{hit} < e_{lim})}{N_{hits}(E_{hit} < \langle E_{hit} \rangle)}
$$

Energy Reconstruction in CALICE - CLIC Workshop, January 2019 Frank Simon (fsimon@mpp.mpg.de)

For both: Parameters / weights determined by χ2 minimisation of energy resolution

Software Compensation in the AHCAL

• Substantial improvement of energy resolution with SC

Comparing Local and Global SC

reco

reco

σ

 $\overline{\mathsf{L}}$

Software Compensation in the AHCAL

Comparing Local and Global SC

• Substantial improvement of energy resolution with SC Local SC slightly better improvement - in excess of

- The CALICE W-AHCAL is close to compensating leaves little handle for software compensation techniques
- \Rightarrow Tested with global SC (local SC in progress)

Software Compensation in the W-AHCAL

Global Software Compensation

Energy Reconstruction in CALICE - CLIC Workshop, January 2019 Frank Simon (fsimon@mpp.mpg.de) \mathbf{F} ilol \mathbf{y} recolution action for only \mathbf{F} and \mathbf{F} and \mathbf{F} \mathbf{F} and \mathbf{F} and \mathbf{F}

Extension to Combined ECAL/HCAL Systems *One Example: SiW ECAL + Scintillator / Fe HCAL*

- Studying energy resolution in a "real-world" setting: A combined system of SiW ECAL, Scintillator/FE HCAL, Tail Catcher
	- A combination of non-compensating systems with different active and absorber materials and varying longitudinal sampling
- Local software compensation extended by subsystem-dependen binning and weight parameter

ECAL (30 layers): Absorber: W; 1.4 mm, 2.8 mm, 4.2 mm Active: Si; 525 µm *HCAL (38 layers) / TCMT (8+8 layers):* Absorber: Steel; ~ 21 mm (including cassettes) Active: Plastic scintillator; 5 mm

Energy Reconstruction in CALICE - *CLIC Workshop, January 2019* Frank Simon (fsimon@mpp.mpg.de)

• Separate treatment of incoming track up to first interaction: calibration factor different than that for showers • Digital weighting for first two bins: Slight advantage for energy resolution due to suppression of Landau fluctuations

The Implementation

• Separate treatment of incoming track up to first interaction: calibration factor different than that for showers • Digital weighting for first two bins: Slight advantage for energy resolution due to suppression of Landau fluctuations

The Implementation

Energy Reconstruction in CALICE - CLIC Workshop, January 2019 Frank Simon (fsimon@mpp.mpg.de) $\frac{1}{2}$ reconstruction in SALISE - OLIO monshop, oantaly 2015

- Substantial improvement in energy resolution:
	- SC in ECAL alone up to 8% improvement
	- SC in HCAL alone up to 23% improvement
	- Full SC up to 30% improvement, for a stochastic term of 42.5% and a constant term of 2.5%
	- \Rightarrow The bulk of the improvement is achieved in the AHCAL

Resulting Performance

Resulting Performance

-
-
-
-
-

Combining Software Compensation with Particle Flow

- Particle flow algorithms make use of calorimeter energy at two main points
	- Track calorimeter cluster matching, and iterative reclustering
	- Energy of neutral particles

14

Local Software Compensation in PandoraPFA

-
-
-
-

Combining Software Compensation with Particle Flow

Local Software Compensation in PandoraPFA

- -
	-

Combining Software Compensation with Particle Flow

Local Software Compensation in PandoraPFA

- -
	-

Energy Reconstruction & Readout Schemes

- CALICE hadron calorimeters use different schemes for energy reconstruction - depending on readout technology:
	- *scintillator*: analog & software compensation
	- *gas*: digital (1 bit), semi-digital (2 bit)

Understanding Resolution Impact of Granularity & Readout Technology

N.B.: Semi-digital reconstruction and software compensation are related: both use optimised hit or energy dependent weighting factors

• Different schemes tested on AHCAL data (3 x 3 cm² granularity)

non (isimon@
'

Energy Reconstruction & Readout Schemes

Understanding Resolution Impact of Granularity & Readout Technology

- CALICE hadron calorimeters use different schemes for energy reconstruction - depending on readout technology: ์
เ $\frac{1}{2}$
	- scintillator: analog & software compensation a u $\overline{0}$ $\overline{0}$ $\overline{0}$
	- *gas*: digital (1 bit), semi-digital (2 bit) m
ini 'Y −0.1

- Different schemes tested on AHCAL data (3 x 3 cm² granularity) 15117 data (3 x 3 cm² $\sum_{i=1}^{n}$
- use • Simulations used to study 1 x 1 cm² granularity (scintillator)
	- fluctuations • Digital & fine granularity best at low energy: Suppression of
	- $\mathbf{F}_{\mathbf{G}}$ 0 10 20 30 40 50 60 70 80 90 NB: Sampling fraction matters: Semi-digital reconstruction in -digital comparable **CALICE** • SC & semi-digital comparable RPCs does not reach the same resolution

N.B.: Semi-digital reconstruction and software compensation are related: both use optimised hit or energy dependent weighting factors $\overline{\textbf{r}}$ $\mathcal{L}(\mathcal{L})$ nandant waighting factors in Digital

Initial Studies with Neural Networks

- Performed with AHCAL physics prototype in 2010 (K. Seidel, FS) *The strategy:*
	- Use "simple" clustering to define a set of shower variables
	- Train a neural network on MC data (NB: quasi-continuous energy distribution to avoid bias)
	- Apply NN to data (requires additional energy correction to account for differences between data and MC)

16

Initial Studies with Neural Networks

- *The strategy:*
	-
	- energy distribution to avoid bias)
	- account for differences between data and MC)

16

Initial Studies with Neural Networks

- *The strategy:*
	-
	- energy distribution to avoid bias)
	- account for differences between data and MC)

Initial Studies with Neural Networks

Simple weighting using energy density only with parametrized weights from MC: ~ 15% improvement

- Performed with AHCAL physics prototype in 2010 (K. Seidel, FS) *The strategy:*
	- Use "simple" clustering to define a set of shower variables
	- Train a neural network on MC data (NB: quasi-continuous energy distribution to avoid bias)
	- Apply NN to data (requires additional energy correction to account for differences between data and MC)

Initial Studies with Neural Networks

Simple weighting using energy density only with parametrized weights from MC: ~ 15% improvement

- Performed with AHCAL physics prototype in 2010 (K. Seidel, FS) *The strategy:*
	- Use "simple" clustering to define a set of shower variables
	- Train a neural network on MC data (NB: quasi-continuous energy distribution to avoid bias)
	- Apply NN to data (requires additional energy correction to account for differences between data and MC)

Energy Reconstruction in CALICE - CLIC Workshop, January 2019 Frank Simon (fsimon@mpp.mpg.de)

NN: up to 25% improvement

- New prototypes (and full detectors) will offer ns-level timing on the cell level
- Obvious benefits for pattern recognition & background rejection INGW PIULULYPES (AIIU I
	- Benefits for energy resolution?

Simulation study for AHCAL prototype

Machine Learning & Timing Information

C. Graf, work in progress

Towards Multivariate Techniques **Towards**

Machine Learning & Timing Information

 $\mathcal{L}=\mathcal{L}$, we can consider the late hitself of late hitself of late $\mathcal{L}=\mathcal{L}$

- New prototypes (and full detectors) will offer ns-level timing on the cell level
	- Obvious benefits for nattern recognition & background rejection INGW PIULULYPES (AIIU I

Energy Reconstruction in CALICE - *CLIC Workshop, January 2019* Frank Simon (fsimon@mpp.mpg.de)

C. Graf, work in progress

- -

Summary & Outlook

- Hadronic energy reconstruction in calorimeters is a challenge and a limiting factor for overall detector performance
- Highly granular calorimeters provide detailed information on the shower substructure on an event-by-event level that can be use to improve the energy reconstruction & resolution: Used in *Software Compensation*
- Different techniques developed and studied in CALICE with test beam data: Global and local software compensation, semi-digital reconstruction, global software compensation with neural networks
	- Successfully applied to single detectors and combined ECAL and HCAL systems with typical resolution improvement of 20% - 30% for pions with energies above \sim 15 GeV
	- Implemented in PandoraPFA for the AHCAL
- Substantial potential for further improvement: Addition of new variables (time), more sophisticated machine learning techniques, extension to electromagnetic showers, …

19

CALICE Technologies

• A rich test beam program, with a variety of different prototypes

A wide range of prototypes

Electromagnetic - Tungsten absorbers

Energy Reconstruction in CALICE - CLIC Workshop, January 2019 **Fixal Construction in CALICE** - CLIC Workshop, January 2019 **Fixal Construction** (fsimon@mpp.mpg.de) ¹¹⁶ the response to single particles at the end of the strip far from the MPPC is 88.3 *±* 0.4% of that

¹¹⁴ onto the MPPC, without passing through the WLS fiber. The detection of such direct scintilla-

 160 cm^2 39 Mpixels in

CERN PS

analog: Silicon and Scintillator/SiPM

Hadronic - Steel and Tungsten absorbers

analog: Scintillator/SiPM (Fe and W)

(Semi)digital: RPCs (Fe, W digital only)

digital: Silicon (MAPS) and the prototype in front of the calibration of the CALICE AHCAL.

+ few-layer SD prototype with Micromegas

CALICE Prototypes

Evolution with Time

3.02(*±*0.02) mm, respectively. A double clad 1 mm diameter Y-11 WLS fiber¹ , of length 43.6

200 mm 122 141 141 neutroscopy were measured using α ray diffraction and energy-dispersive α

Energy Reconstruction in CALICE - *CLIC Workshop, January 2019* Frank Simon (fsimon@mpp.mpg.de) Energy Reconstruction in CALICE - CLIC Workshop, January 2019 $\sum_{i=1}^{n}$ of $\sum_{i=1}^{n}$ flowers flowers for $\sum_{i=1}^{n}$

The four edges of each strip were polished to precisely control the strip size and give good sur-2007 2008 2010 2012 2018

(tungsten:carbon:cobalt:chrome) = (0.816:0.055:0.125:0.005). The orientation of each layer was

digital reconstruction: Saturation effects become relevant $\mathcal{L}_{\mathcal{A}}$ before the correction of the multi-threshold mode. The multi-threshold mode. The multi-threshold mode. The multi-

• At energies above 30 GeV semi-digital reconstruction provides a substantial performance advantage wrt

Comined ECAL/HCAL Software Compensation

24

Linearity & Resolution Improvement

Software Compensation with Neural Networks

CALICE AHCAL: Linearity

Performance of Highly Granular Calorimeters

Energy resolution - Electromagnetic

to larger sampling traction, with a reduced comparties to the inter-

IN R Deter *J. Repond et al. Nuclear Inst. and Methods in Physics Research, A 887 (2018) 150–168* Scintillator-Tungsten ECAL: [N.B. Detector optimized for particle separation, not single particle resolution]

Energy Reconstruction in CALICE - CLIC Workshop, January 2019 **Figure 2019** Frank Simon (fsimon@mpp.mpg.de)

Calorimeters

Software compensation (SC) and semi-digital reconstruction use weighting factors to optimise energy resolution

