

CompactLight@elettra.eu

www.CompactLight.eu

The CompactLight Project (XLS)

Andrea Latina

On behalf of the CompactLight collaboration

XLS

Funded by the

European Union

"The possibility of producing low charge (pC range), ultra-short (submicrometer), electron bunches with small emittance and high brightness, opens new possibilities to design and build <u>compact</u>, <u>lower cost FELs</u>, to produce high intensity, femtosecond long, coherent X-ray pulses in a wide wavelength range".

C. Pellegrini, "Compact, cheap, better", ICFA FLS 2010

With CompactLight we plan to design **a Hard X-ray Facility** using the very latest concepts for:

- a. High brightness electron photoinjectors
- b. Very high gradient accelerating structures
- c. Novel short period undulators.

The XLS Collaboration is an initiative among several International Laboratories aimed at promoting the construction of the next generation FEL based photon sources with innovative accelerator technologies

H2020 Design Studies (2018-2020)

http://compactlight.eu

List of Participants

Participant		Organisation Name	Country		
1	ST (Coord.)	Elettra – Sincrotrone Trieste S.C.p.A.	Italy		
2	CERN	CERN - European Organization for Nuclear Research International			
3	STFC	Science and Technology Facilities Council – Daresbury Laboratory	United Kingdom		
4	SINAP	Shanghai Inst. of Applied Physics, Chinese Academy of Sciences	China		
5	IASA	Institute of Accelerating Systems and Applications	Greece		
6	UU	Uppsala Universitet	Sweden	Italy	г
7	UoM	The University of Melbourne	Australia	ILaly	5
8	ANSTO	Australian Nuclear Science and Tecnology Organisation	Australia	Neth.	3+1
9	UA-IAT	Ankara University Institute of Accelerator Technologies	Turkey	UK	3
10	ULANC	Lancaster University	United Kingdom	Spain	2
11	VDL ETG	VDL Enabling Technology Group Eindhoven BV	Netherlands	Australia	-
12	TU/e	Technische Universiteit Eindhoven	Netherlands	Australia	Z
13	INFN	Istituto Nazionale di Fisica Nucleare	Italy	China	1
14	Kyma	Kyma S.r.l.	Italy	Greece	1+2
15	SAPIENZA	University of Rome "La Sapienza"	Italy	Sweden	1
16	ENEA	Agenzia Naz. per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile	Italy	Turkey	-
17	ALBA-CELLS	Consorcio para la Construccion Equipamiento y Explotacion del Lab. de Luz Sincrotron	Spain	Erance	1
18	CNRS	Centre National de la Recherche Scientifique CNRS	France	Flance	1
19	КІТ	Karlsruher Instritut für Technologie	Germany	Germany	1
20	PSI	Paul Scherrer Institut PSI	Switzerland	Switz.	1
21	CSIC	Agencia Estatal Consejo Superior de Investigaciones Científicias	Spain	Finland	1
22	UH/HIP	University of Helsinki - Helsinki Institute of Physics	Finland	Norway	 ∩⊥1
23	VU	VU University Amsterdam	Netherlands	NOTWAY	4
24	USTR	University of Strathclyde	United Kingdom	Internat.	1
Third Parties		Organisation Name	Country		
AP1	OSLO	Universitetet i Oslo - University of Oslo	Norway		
AP2	ARCNL	Advanced Research Center for Nanolithography	Netherlands		
AP3	NTUA	National Technical University of Athens	Greece		
AP4	AUEB	Athens University Economics & Business	Greece		

The New Facility, compared with Current Facilities, will benefit from:

- i. A lower electron beam energy, due to the enhanced undulator performance.
- ii. Being significantly more compact due to lower energy and high gradient structures.
- iii. Having a much lower electrical power demand than current facilities.
- iv. Having much lower construction and running costs.

This will facilitate the widespread development of X-ray FEL Facilities across Europe and beyond, by making their construction and operation costs more affordable through an optimum combination of emerging and innovative accelerator technologies.

Preliminary Parameters and Layout of XLS hard X-ray FEL facility

Parameter	Value	Unit
Minimum Wavelength	0.1	nm
Photons per pulse	>10 ¹²	
Pulse bandwidth	<<0.1	%
Repetition rate	100 to 1000	Hz
Pulse duration	<1 to 50	fs
Undulator Period	10	mm
K value	1.13	
Electron Energy	4.6	GeV
Bunch Charge	<250	рС
Normalised Emittance	<0.5	mrad

Funded by the European Union

FEL Facilities

E.A. Seddon et al.

FEL Facilities	Institutes		
Hard X-ray	STFC, PSI, UA-IAT, SINAP, UoM, ANSTO		
Soft X-ray	ELETTRA-ST, INFN		
Compton Sources	TU/e, ANSTO		
Upgrading of existing Facilities	ELETTRA-ST, INFN		

CERN has no direct interest in Synchrotron Light Sources and FELs, but the activities on CompactLight will have strong return value for the CLIC project: i.e. accelerator and RF components optimization, technical developments with industry, costs reduction, etc.

Sub-systems	Institutes
Accelerating Structures	CERN, SINAP, UU, VDL-ETG, PSI, CSIC, UH/HIP, USTR
Undulators	ENEA, STFC, KIT, CERN, PSI, KYMA, ALBA-CELLS, UU, VU
Beam diagnostics and manipulation	ST, CERN, STFC, SINAP, IASA, UU, UA-IAT, ULANC, INFN, SAPIENZA, INFN, PSI, ALBA-CELLS, CNRS

Work Package		Lead Participant	Person Months	Start Month	End month
WP1	Project management and Technical Coordination	Elettra - ST	32	1	36
WP2	FEL Science Requirements and Facility Design	STFC	68	2	36
WP3	Gun and Injector	INFN	76	2	36
WP4	RF systems	CERN	78	2	36
WP5	Undulators and Light production	ENEA	81	2	36
WP6	Beam dynamics and Start to End Modelling	UA-IAT	78	2	36
WP7 Global Integration with New Research Infrastructures		Elettra - ST	27	6	36
		Total Person Months	440		

- Based on user-driven scientific requirements, determine the overall design and parameters for an ideal X-band driven FEL for Hard X-rays, with options for Soft X-ray FEL and Compton Source (WP2).
- Design the main machine sub-assemblies required, including e-Gun, RF power units and power distribution systems, accelerating structures and undulators (WPs 3 to 5).
- Specify the key parameters of the machine including beam structure, lattice, geometric layout, mechanical tolerances, magnetic transverse focusing, required diagnostics, while identifying a solution as common as possible (WP6).
- Gathering the user demands on FELs and accelerator upgrades, in the near and mid-term future, emphasizing the needs from European laboratories and global partners, develop plans for an harmonious integration within new Research Infrastructures (WP7).

Funded by the European Union

WPs Relationship

Bring together technology advances in key accelerator systems for XFEL

WPs Ongoing activities

European Union Time plan, Milestones and Deliverables Compact

VP Year 1 Year 2		Year 3		
Task 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2	23 24 25	5 26 27 28 29 30 31 32 3	33 34 35 36	
1 Project Management and Technical Coordination	M		MD	
1.1 General governance of CompactLight and scientific management				
1.2 Monitoring and reporting, partners coordination				
1.3 Administrative and financial coordination Kick-off Public Proj. Rew. Meeting				
1.4 Dissemination of information Weeting WEB site				
2 FEL Science Requirements and Facility Design	M	M	MD	
2.1 User requests and FEL performance				
2.2 FEL layout, accelerator and undulator requirements				
2.3 CompactLight CDR				
3 Gun and Injector	M		MD	
3.1 Evaluation of e-gun and injector technologies and options				
3.2 Bunch compressors and phase space linearization				
3.3 Beam diagnostics and manipulation				
3.4 E-gun and injector design				
4 RF Systems	M		MD	
4.1 Parametrized of performance and cost model of the RF unit				
4.2 Design report of optimized rf unit				
4.3 Accelerating structure design and fabrication procedures				
5 Undulators and Light production	M	M	MD	
5,1 Near and medium term (4-5 years) undulator technology				
5,2 Design report of the baseline undulator for the facility				
6 Beam Dynamics and Start to End modeling	M	M	MD	
6,1 Tools for evaluating the facility performance				
6,2 Start to end simulation of the facility				
7 Global integration with new Research Infrastructures			MD	
7,1 Mid term reports for integration and services analysis	V			
7,2 Final report integration, services and cost analysis				
D = Deliverable CompactLight Gant chart				

First XLS - CompactLight Annual Meeting

10-12 December 2018 Europe/Madrid timezone

XLS Users Meeting: 27-28 Nov 2018 at CERN

	Welcome: Welcome	Ø	€:00	Serial crystallography and single particle imaging with XFELs: Overview and photon beam	Adrian Mancuso 🥝
	18-3-008 - CLIC Meeting room, CERN 13:30 - 13:40		requirement		
	The CompactLight Project	Ø		Time-resolved serial MX correlated with emission spectroscopy	Allen Orville 🥝
	18-3-008 - CLIC Meeting room, CERN	13:40 - 14:00			09:20 - 09:40
14:00	XLS layout and performance	0		Ultrafast X-ray scattering in correlated materials	Matteo Savoini 🥝
	18-3-008 - CLIC Meeting room, CERN	14:00 - 14:20	1:00		09:40 - 10:00
	Ultrafast X-ray spectroscopy of molecular systems and solid materials	Majed Chergui	7.00	Scientific case of the EUPRAXIA@SPARC_LAB	Augusto Marcelli
	18-3-008 - CLIC Meeting room, CERN	14:20 - 14:40		High energy density science with X.Ray EFI s	Justin Wark
	Resonant spectroscopies at Compact FEI s	Claudio Masciovecchio			10:20 - 10:40
	18-3-008 - CLIC Meeting room CERN	14:40 - 15:00		Attosecond science with X-ray FELs	Jon Marangos 🥝
15:00	Partossand V rev eventients for chemical dynamics research	Christian Brasslar			10:40 - 11:00
20.00	Femtosecond X-ray experiments for chemical dynamics research	Christian Bressler	1:00	Coffee Break with Discussion in Working Groups	
	18-3-008 - CLIC Meeting room, CERN	15:00 - 15:20			
	X-ray imaging, spectroscopy and diffraction: a user's ultrafast dream	Stefano Bonetti 🥝			
	18-3-008 - CLIC Meeting room, CERN	15:20 - 15:40			
	Coffee Break with Discussion in Working Groups			18-3-008 - CLIC Meeting room, CERN	11:00 - 12:00
			2:00	Round table discussion and wrap up	
16:00					
	18-3-008 - CLIC Meeting room, CERN	15:40 - 16:40			
	Round table discussion		3:00		-
17:00				18-3-008 - CLIC Meeting room, CERN	12:00 - 13:30
	18-3-008 - CLIC Meeting room, CERN	16:40 - 18:00			
18:00					

The CompactLight prime objective is to generate a compact & low cost FEL facility design

	Soft x-ray	Hard x-ray	
Photon energy [keV] (min- max)	0.25 - ~2	~2 - 16	
Wavelength [nm] (max-min)	5 - 0.6		
Repetition rate [Hz]	1000	100	
Maximum pulse energy [mJ]	Competitive with other FELs	Competitive with other FELs	
Number of photons			
Pulse duration [fs]	0.1 -	- 50	
Polarisation (at experiment)	Variable, selectable	Variable, selectable	
Two-colour pulses: time separation [fs]	-20 -> +40		
Two-colour pulses: photon energy variation (max. of E2/E1)	2 (270-530eV), 1.2 for the rest of the range	1.1	

Tasks:

- Review State of the art Gun/Injector (S, C, X-band) and pick the best for XLS
- Develop of novel high-repetition rate gun/injector (with K-band linearizer)

400Hz S-band rf gun in CLARA

Ultra-low emittance electron source, TU/e

LCLS S-band rf gun

S-Band Injector (Q=75pC)

*σ*_=360 μm

A.Giribono

15

10

s [m]

0.2

0^L 0

5

20

Funded by the European Union

C-Band Injector (Q=100pC)

Funded by the **European Union**

X-Band Injector (Q=250 pC)

Linac gradients for most recent X-ray FELs

European XFEL (Germany)	24 MV/m	Superconducting L-band
Swiss FEL (Switzerland)	28 MV/m	Normal-conducting C-band
SACLA (Japan)	35 MV/m	Normal-conducting C-band

CLIC accel. structure:

- Normal-conducting X-band
- > Gradient 100 MV/m
- > Input power ≈50 MW
- > Pulse length ≈200 ns
- > Repetition rate 50 Hz

XLS target: 65-70 MV/m

W. Wuensch

 \mathbf{r}_0

t

d

Baseline accelerating gradient: 65 MV/m

Trade-off between Machine compactness and RF power requirements

- RF system and pulse compressor characteristics
- Average iris radius: **3.5 mm Beam dynamics requirements (BBU threshold)**
- Electromagnetic parametric study of the TW cell
- Effective shunt impedance optimization by a 2D scan of the total length and the iris tapering
- Check of modified Poynting vector values @ nominal gradient
- Design a realistic RF module including power distribution network
- Finalize the electromagnetic (input and output couplers) and mechanical design

Iterations among these various steps are typically required.

b

Funded by the European Union

XLS Accel. Struct. optimization

- Structure analytical optimization
 - Working at 36 GHz, $2\pi/3$ mode
 - Constant impedance structure
 - Consistent with Lancaster's results

Geometrical parameters				
a [mm]	≥ 2			
b [mm] ≥ 3.8869				
L [mm] 2.778 (2π/3 mode)				
r ₀ [mm]	0.8			
t [mm]	0.6			

European Union Ka-band gyro-klystron at UESTC

XLS

CLIC Week - 21-25 January 2019

A. Latina 26

Comparative studies of *ambitious* undulators on the timescale of 4-5 years: e.g. cryo- permanent-magnet, super-conductive undulators, ...

Cory PM Undulator HZB/UCLA

ENEA-INFN

S. C. Undulator KIT

F. Nguyen

Soft X-ray case working parameters

Hard X-ray	case	working	parameters

Undulator parameters			
undulator period	$1.7~\mathrm{cm}$		
undulator gap	$3 \mathrm{mm}$		
deflection parameter (RMS)	1.9		
Bunch parame	eters		
beam energy	4 GeV		
pulse duration (FWHM)	10 fs		
bunch charge	20 pC		
peak current	1.9 kA		
norm. emittance	$0.12 \text{ mm} \times \text{mrad}$		
energy spread	0.01 %		
Potential red	ach		
FEL wavelength $(\hbar\omega)$	0.66 nm (1.9 keV)		
N_{γ} /pulse	5.6×10^{11}		
$E_{\rm FEL}/{\rm pulse}$	0.2 mJ		
saturation length	21 m		

Undulator param	neters
undulator period	1.3 cm
undulator gap	3 mm
deflection parameter (RMS)	1.17
Bunch parame	eters
beam energy	$9 { m GeV}$
pulse duration (FWHM)	7.5 fs
bunch charge	75 pC
peak current	9 kA
norm. emittance	$0.12 \text{ mm} \times \text{mrad}$
energy spread	0.01 %
Potential red	nch
FEL wavelength $(\hbar\omega)$	0.05 nm (25 keV)
N_{γ} /pulse	2.5×10^{11}
$E_{\rm FEL}/{\rm pulse}$	1 mJ
saturation length	25 m
	F. Ngu

Funded by the

European Union

- Perform start-to-end simulations, which cover the beam transport from the cathode to the FEL exit, for Soft X-Ray & Hard X-Ray, including mechanical tolerance studies.
- > Provide key parameters and performance estimates of the overall facility.
- Define the basis for technology choices for critical components and for developing detailed designs of subsystems and components.
- Develop tools for modeling the machine, as the basis for the final integrated performance studies.

XLS flavours

Frascati's XLS X-band structure ; Lancaster / CERN K-band structure

Bunch charge = 250 pC Injector_sigmaz = 208 um

BC1_sigmaZ = 35 um BC1_meanE = 300.0 MeV

BC2_sigmaZ = 8 um BC2_meanE = **1.2 GeV** BC2_slice_sigmaE = 0.0007 GeV BC2_slice_rel_Espread = 0.06 %

END_sigmaZ = 8 um END_meanE = **4.0 GeV** END_slice_sigmaE = 0.00012 GeV END slice rel Espread = 0.003 %

Funded by the European Union 2nd XLS Midterm Review, June 2019 Compact

Thank you!

CompactLight is funded by the European Union's Horizon2020 research and innovation programme under Grant Agreement No. 777431.

Extras

WP2 - WP6:

- Facility design and beam dynamics, modelling, simulation, specifications and performance assessment
- Integration and cost optimisation

WP3:

• Linac and bunch compressors optics design and specifications (full X-band w/ K-band)

WP4: Work Package leader

- X-band structures and module design
- TW K-band Lineariser structure and coupler design. K-band pulse compression
- Design of standardized RF unit

WP5:

 Employ technical high-temperature superconductors (HTS) to superconducting undulators and wiggler for the Compact Linear Collider (CLIC) damping rings or the next generation of compact, highly brilliant light sources

WP1 - WP7:

 Support project management and coordination as well as CompactLight global integration for new RI (WP7)