# The CLIC Physics Potential for long-lived and exotic signatures

A summary of results from the Yellow Report "CLIC physics potential for new physics"

JAN. 23 2019

ROBERTO FRANCESCHINI (ROMA 3 UNIVERSITY)







CLIC Week 2019 - https://indico.cern.ch/event/753671/

### Still looking for new physics



### No guarantee for discovery

- neither at the LHC
- nor at any future collider

A demonstrated capability to cope with a large and diverse set of experimental signatures is a key item in the wishlist of features fro any future collider project

Sensitivity to a broad spectrum of signatures is a key asset, that will survive changes in the theory knowledge/prejudice

SUBTLE IS THE LORD



Current "general purpose" experiments were really designed for pretty standard signals, e.g.  $H \rightarrow \gamma \gamma$  or jets+mET

- Now is the time to think about what can be done in future detectors.
- CLIC (and ILC) can exploit <u>full detector</u> <u>simulation</u>

#### Long Lived Particles Forum

NEXT MEETING AT CERN 27 TO 29 MAY 2019

latest meeting in Amsterdam



Current "general purpose" experiments were really designed for pretty standard signals, e.g.  $H \rightarrow \gamma \gamma$  or jets+mET

- Now is the time to think about what can be done in future detectors.
- CLIC (and ILC) can exploit <u>full detector</u> <u>simulation</u>

#### Long Lived Particles Forum

NEXT MEETING AT CERN 27 TO 29 MAY 2019

latest meeting in Amsterdam



Searching for long-lived particles at the LHC: Fifth workshop of the LHC LLP Community

Search...

27-29 May 2019 CERN

Overview

Timetable

Participant List



Current "general purpose" experiments were really designed for pretty standard signals, e.g.  $H \rightarrow \gamma \gamma$  or jets+mET

- Now is the time to think about what can be done in future detectors.
- CLIC (and ILC) can exploit <u>full detector</u> <u>simulation</u>

#### Long Lived Particles Forum

NEXT MEETING AT CERN 27 TO 29 MAY 2019

latest meeting in Amsterdam



Searching for long-lived particles at the LHC: Fifth workshop of the LHC LLP Community

LLP at Future Colliders "Breakout session"

27-29 May 2019 CERN Search... Q

Overview

Timetable

Participant List



Current "general purpose" experiments were really designed for pretty standard signals, e.g.  $H \rightarrow \gamma \gamma$  or jets+mET

- Now is the time to think about what can be done in future detectors.
- CLIC (and ILC) can exploit <u>full detector</u> <u>simulation</u>













#### SUBTLE IS THE LORD



... plenty of other options. A white paper is coming from the Long Lived Forum to summarize.

#### Three generic reasons why this can happen



heavy mediator from a hierarchical larger mass scale



small phase-space from symmetry



small coupling from symmetry breaking

- it happens in QCD (!)
- the necessary ingredients are just the same as for the formulation of any model of particle physics (mass scales and their hierarchies, symmetries and their breaking, ...)

#### Many generic BSM reasons why this can happen



heavy mediator from a hierarchical larger mass scale



small phase-space from symmetry



small coupling from symmetry breaking

- it happens in QCD (!)
- the necessary ingredients are just the same as for the formulation of any model of particle physics (mass scales and their hierarchies, symmetries and their breaking, ...)

#### Many generic BSM reasons why this can happen

long life-time may be dictated by other physics requirements as well

late-time decay in the Early
Universe to fulfill out-ofequilibrium condition for baryon
number generation



heavy mediator from a hierarchical larger mass scale

Dark Matter candidate



small phase-space from symmetry

relic abundance  $\Omega\text{-}M_{DM}/g$  so g«1 for light particles

$$\gamma_D \to \ell^+ \ell^-$$



$$N^0 \to \mathscr{C}^+ W^-$$

small coupling from symmetry breaking

- it happens in QCD (!)
- the necessary ingredients are just the same as for the formulation of any model of particle physics (mass scales and their hierarchies, symmetries and their breaking, ...)

# Directsearches

# Dark Matter

#### Electroweak Dark Matter: LSP (+NLSP)



Wide open spectra

Co-annihilation

GeV – WIMP-like multiplet

Accidental Dark Matter

DM SM singlet  $e^+e^- \rightarrow Z' \rightarrow \chi \chi$  Generic leptons+missing momentum

Soft-objects + missing momentum

Short (disappearing) tracks

Mono-photon

Electroweak
Precision
Tests

#### Electroweak Dark Matter: LSP (+NLSP)



Wide open spectra

Co-annihilation

GeV -

WIMP-like multiplet
Accidental Dark Matter

DM SM singlet  $e^+e^- \rightarrow Z' \rightarrow \chi \chi$  Generic leptons+missing momentum

Soft-objects + missing momentum

Short (disappearing) tracks

Mono-photon

Electroweak
Precision
Tests

HIGGSINO DM

O(CM) DISAPPEARING TRACKS





HIGGSINO DM

O(CM) DISAPPEARING TRACKS





HIGGSINO DM

O(CM) DISAPPEARING TRACKS



CLICdp-Note-2017-001

#### SIMPLIFIED RECONSTRUCTION

Assume track is seen when

- $c\tau > 4.4 \text{ cm/sin}\theta (19^{\circ} < \theta < 90^{\circ})$
- $ct > 22 \text{ cm/cos}\theta (13^{\circ} < \theta < 19^{\circ})$  5 10
- $ct > 29 \text{ cm/cos}\theta (0^{\circ} < \theta < 13^{\circ})$



Clean experimental environment:

- No trigger
- No QCD background
- Tracker is closer to the beam

#### Challenges:

boost cannot make h tracks longer

*CLIC Efficient at d*≥ 4 *cm* 

*LHC Efficient at d*≥ 10 cm



HL-LHC can put bounds on Higgsino up to ~300 GeV

Exponential rate gain when cτ < 10 cm

HIGGSINO DM

O(CM) DISAPPEARING TRACKS

#### ASSUME PURE HIGGSINO LIFETIME





HIGGSINO DM

O(CM) DISAPPEARING TRACKS

#### ASSUME PURE HIGGSINO LIFETIME





HIGGSINO DM

O(CM) DISAPPEARING TRACKS

#### ASSUME PURE HIGGSINO LIFETIME





background evaluation needed

CLIC 3 TeV yields 10 events per ab-1 for 1.1 TeV Higgsino thermal DM candidate

HIGGSINO DM

O(CM) DISAPPEARING TRACKS

#### ASSUME PURE HIGGSINO LIFETIME

cτ = 1.2 cm @ 200 GeV → 0.7 cm @ 1 TeV



background evaluation needed

CLIC 3 TeV yields 10 events per ab-1 for 1.1 TeV Higgsino thermal DM candidate

#### LIFETIME AS PARAMETER (NON-PURE HIGGSINO)





# Hidden Sector

via simplified models

#### Hidden Valley Displaced Vertex

**CLICDP-NOTE-2018-001** 

$$e^+e^- \rightarrow h \nu \nu$$

$$h \rightarrow \pi_V \pi_V$$



Point Of Closest Approach + Distance Of Closest Approach

| Process                                                                                | $\pi_v^0$ lifetime [ps] | $\pi_v^0$ mass [GeV/c <sup>2</sup> ] | cross section [pb] |
|----------------------------------------------------------------------------------------|-------------------------|--------------------------------------|--------------------|
| $h^0 	o \pi_{\scriptscriptstyle \mathcal{V}}^0 \pi_{\scriptscriptstyle \mathcal{V}}^0$ | 1,10,100,300            | 25,35,50                             | $0.42 \cdot BR$    |
| $e^+e^-	o qar q$                                                                       | _                       | _                                    | 2.95               |
| $e^+e^-	o qar q  u ar v$                                                               | _                       | -                                    | 0.55               |
| $e^+e^-\to q\bar q q\bar q$                                                            | _                       | -                                    | 1.32               |
| $e^+e^-	o qar q qar q var v$                                                           | _                       | _                                    | 0.07               |











#### Hidden Valley Displaced Vertex

**CLICDP-NOTE-2018-001** 

 $e^+e^- \rightarrow h \nu \nu$ 

 $h \rightarrow \pi_V \pi_V$ 

 $\pi_V \rightarrow bb$ 

N=4 exclusive k<sub>T</sub> jets

qq qqvv qqqq qqqqvv

# of tracks

# of DV

Mass of DV





Inv. mass of rec. DV [GeV/c<sup>2</sup>]







Mass of jj

Mass of 4j

Jets y<sub>34</sub> and y<sub>23</sub>

#### Boosted Decision Tree: ε<sub>S</sub>≥0.1





# re-use of simplified models

#### Heavy Higgs Displaced Decay

BASED ON CLICDP-NOTE-2018-001

$$e^+e^- \rightarrow H \nu \nu$$

 $H \rightarrow LLP \ LLP$ 



 $LLP \rightarrow bb$ 

"Neutral Naturalness" scenarios: Folded SUSY, fraternal Twin Higgs, ...





m<sub>H</sub>=125, 200, 400, 600, 800, 1000 GeV

#### CLIC 3 TeV simplified analysis:

- Interaction point Significance > 16
- "Loose" 90% b-tag efficiency
- $\Delta R_{bb} > 0.5$  for isolation
- 0.5 efficiency for N<sub>track</sub>>5



In general conservative good agreement

#### Heavy Higgs Displaced Decay

BASED ON CLICDP-NOTE-2018-001



 $e^+e^- \rightarrow H \nu \nu \qquad H \rightarrow LLP \ LLP$ 









#### Heavy Higgs Displaced Decay

BASED ON CLICDP-NOTE-2018-001



 $H \rightarrow LLP \ LLP$ 





# Baryogenesis

## WIMP Baryogenesis

SMALL COUPLINGS

NB FROM OUT-OF-EQUILIBRIUM DECAY OF WOULD-BE WIMP





Possible e+e-  $\rightarrow vv + 2 DV signal$ 

Would-be WIMP can be **SM-singlet** or **SM-charged** 

$$\mathcal{L}_{\text{prod}}^{\text{singlet}} \supset \frac{c_H}{\Lambda_H} \chi^2 |H|^2 + \frac{c_q}{\Lambda_q^2} (\bar{\chi} \Gamma \chi) (\bar{q} \Gamma' q) + \frac{c_g}{\Lambda_g^3} \chi^2 (G_{\mu\nu})^2 + \dots,$$





# WIMP Baryogenesis



BASED ON CLICDP-NOTE-2018-001

DISPLACED DECAYS TO HADRONS

$$e^+e^- \rightarrow \chi\chi \nu\nu \rightarrow \nu\nu + 2 (DV \rightarrow jjj)_{\chi}$$

assume 100% efficient vertex finder in  $3\cdot10^{-3}$  m  $< c\tau < 0.1$  m (CLICdp-Note-2018-001)



- Standard "targets" such as vanilla SUSY, compositeness of Higgs and other states, sub-TeV WIMPs are all being probed and are under a fair amount of pressure
- Motivations for new physics to be out there are stronger than ever

★ next generation of new physics exploration has to be necessarily "broad-band"

★ macro/meso-scopic life-times are possible and motivated from several standpoints







- long-lived decays of a 125 GeV Higgs (clicdp)
- long-lived decays of a Heavy Higgs (pheno-level Yellow Report)
- long-lived decays of a "baryo-genitor" (pheno-level Yellow Report)
- short-tracks from a Higgsino DM candidate (pheno-level Yellow Report)

- short-tracks from a Higgsino DM candidate (CLICdp inputs, especially on background)
- long-lived decays of a Heavy Higgs (CLICdp validation of recast)
- long-lived decays of a "baryo-genitor" (CLICOP input and effort for the 3j DV)
- long-lived decays of a Heavy Neutrino (open chapter)
- long-lived decays of a dark photons and dark Z' (open chapter)

CONCLUSIONS

#### MORE SIGNATURES ON THE TABLE\*



### Thank you!

Contributors: S. Alipour-Fard <sup>1</sup>, W. Altmannshofer <sup>2</sup>, A. Azatov <sup>3,4</sup>, D. Azevedo <sup>5,6</sup>, J. Baglio <sup>7</sup>, M. Bauer <sup>8</sup>, F. Bishara <sup>9,10</sup>, J.-J. Blaising <sup>11</sup>, S. Brass <sup>12</sup>, D. Buttazzo <sup>13</sup>, Z. Chacko <sup>14,15</sup>, N. Craig <sup>1</sup>, Y. Cui <sup>16</sup>, D. Dercks <sup>9,17</sup>, L. Di Luzio <sup>8,13,18</sup>, S. Di Vita <sup>19</sup>, G. Durieux <sup>9,20</sup>, J. Fan <sup>21</sup>, P. Ferreira <sup>5,22</sup>, C. Frugiuele <sup>23</sup>, E. Fuchs <sup>23</sup>, I. García <sup>24,25</sup>, M. Ghezzi <sup>7,26</sup>, A. Greljo <sup>25</sup>, R. Gröber <sup>8,27</sup>, C. Grojean <sup>9,27</sup>, J. Gu <sup>28</sup>, R. Hunter <sup>29</sup>, A. Joglekar <sup>16</sup>, J. Kalinowski <sup>30</sup>, W. Kilian <sup>12</sup>, C. Kilic <sup>31</sup>, W. Kotlarski <sup>32</sup>, M. Kucharczyk <sup>33</sup>, E. Leogrande <sup>25</sup>, L. Linssen <sup>25</sup>, D. Liu <sup>34</sup>, Z. Liu <sup>14,15</sup>, D. M. Lombardo <sup>35</sup>, I. Low <sup>34,36</sup>, O. Matsedonskyi <sup>23</sup>, D. Marzocca <sup>4</sup>, K. Mimasu <sup>37</sup>, A. Mitov <sup>38</sup>, M. Mitra <sup>39</sup>, G. Moortgat-Pick <sup>9,17</sup>, M. Mühlleitner <sup>40</sup>, S. Najjari <sup>41</sup>, M. Nardecchia <sup>4,25</sup>, M. Neubert <sup>28,42</sup>, J. M. No <sup>43</sup>, G. Panico <sup>9,44,45,46</sup>, L. Panizzi <sup>47,48</sup>, A. Paul <sup>9,27</sup>, M. Perelló <sup>24</sup>, G. Perez <sup>23</sup>, A. D. Plascencia <sup>8</sup>, G. M. Pruna <sup>49</sup>, D. Redigolo <sup>23,50,51</sup>, M. Reece <sup>52</sup>, J. Reuter <sup>9</sup>, M. Riembau <sup>36</sup>, T. Robens <sup>53,54</sup>, A. Robson <sup>25,55</sup>, K. Rolbiecki <sup>31</sup>, A. Sailer <sup>25</sup>, K. Sakurai <sup>31</sup>, F. Sala <sup>9</sup>, R. Santos <sup>5,22</sup>, M. Schlaffer <sup>23</sup>, S. Y. Shim <sup>56</sup>, B. Shuve <sup>16,57</sup>, R. Simoniello <sup>25,58</sup>, D. Sokołowska <sup>30,59</sup>, R. Ström <sup>25</sup>, T. M. P. Tait <sup>60</sup>, A. Tesi <sup>46</sup>, A. Thamm <sup>25</sup>, N. van der Kolk <sup>61</sup>, T. Vantalon <sup>9</sup>, C. B. Verhaaren <sup>62</sup>, M. Vos <sup>24</sup>, N. Watson <sup>63</sup>, C. Weiland <sup>8,64</sup>, A. Winter <sup>63</sup>, J. Wittbrodt <sup>9</sup>, T. Wojton <sup>33</sup>, B. Xu <sup>38</sup>, Z. Yin <sup>36</sup>, A. F. Żarnecki <sup>30</sup>, C. Zhang <sup>65</sup>

### WIMP: EW-ino as Dark Matter

MSSM

WITH R-PARITY



large parts of parameters space have almost degenerate multiplets

### Direct Searches

WIMP

#### **UNDER PRESSURE**





WIMP is under a fair amount of pressure, still an interesting candidate to test the capabilities of a future collider

### Direct Searches

WIMP

#### **UNDER PRESSURE**





WIMP is under a fair amount of pressure, still an interesting candidate to test the capabilities of a future collider

# Short (disappearing) tracks

HIGGSINO DM

O(CM) DISAPPEARING TRACKS

Charged-Neutral mass splitting can be different if Higgsino Mixed with other states (e.g. Wino)

#### TAKE LIFETIME AS FREE PARAMETER

#### ISOLINES FOR NUMBER OF EVENTS ASSUMED FOR DISCOVERY



### Neutrino mass mechanisms

LEPTON

NUMBER BREAKING

L - violation

(1,1,0) (at least 2)



(1,1,0) (at least 2+1)



ha symmity breaking

Ni = Ne

Christ. direc

X

O

E;

Flavor

E;

E

INIV

L – not accidental

new physics before 2012

$$\frac{(LH)^2}{\Lambda}$$

UV



d = 7 (1,1,2)

$$\frac{\left(DH\sigma_2H\right)^2S^{--}}{\Lambda^3}$$

UV



J + - - H

H - - - H

1 S++ - - H

L – gauged, SSB

 $SU(3) \otimes SU(2)_L \otimes SU(2)_L \otimes U(1)_{B-L}$ 

(1,2,1,1), (1,1,2,1), (1,2,2,1), (1,1,1,2),

# Neutrinos, See-saw

### Mediator of Neutrino mass mechanism

**DOUBLY CHARGED** 

Generically  $S^{++} \rightarrow \ell^+ \ell^+$  (or  $W^+W^+$ )

$$v_T = \frac{\kappa v^2}{\sqrt{2}M_T^2}$$

$$v_T < 100 \text{ KeV} \quad H^{++} \rightarrow \ell^+ \ell^+$$

$$v_T > 100 \text{ KeV} \quad H^{++} \to W^+ W^+$$



 $m_{T^{++}}$  [GeV]



1.5 TeV

Exclude Type-2 seesaw below 1.5 TeV for any Triplet VEV

### Mediator of Neutrino mass mechanism

**DOUBLY CHARGED** 

Generically  $S^{++} \rightarrow \ell^+ \ell^+$  (or  $W^+W^+$ )

$$v_T = \frac{\kappa v^2}{\sqrt{2} M_T^2}$$
  $v_T < 100 \text{ KeV}$   $H^{++} \to \ell^+ \ell^+$   $v_T > 100 \text{ KeV}$   $H^{++} \to W^+ W^+$ 



 $m_{T^{++}}$  [GeV]



1.5 TeV

Exclude Type-2 seesaw below 1.5 TeV for any Triplet VEV

### Mediator of Neutrino mass mechanism

**DOUBLY CHARGED** 

Generically  $S^{++} \rightarrow \ell^+ \ell^+$  (or  $W^+W^+$ )

$$v_T = \frac{\kappa v^2}{\sqrt{2}M_T^2} \qquad v_T < 10$$

$$v_T > 10$$

$$v_T < 100 \text{ KeV}$$
  $H^{++} \rightarrow \ell^+ \ell^+$   $v_T > 100 \text{ KeV}$   $H^{++} \rightarrow W^+ W^+$ 



 $m_{T^{++}}$  [GeV]



1.5 TeV

Exclude Type-2 seesaw below 1.5 TeV for any Triplet VEV

### Electroweak Dark Matter: LSP (+NLSP)



Wide open spectra

Co-annihilation

GeV – WIMP-like multiplet

Accidental Dark Matter

DM SM singlet  $e^+e^- \rightarrow Z' \rightarrow \chi \chi$  Generic leptons+missing momentum

Soft-objects + missing momentum

Short (disappearing) tracks

Mono-photon

Electroweak
Precision
Tests

### Electroweak Dark Matter: LSP (+NLSP)

 $\Delta m$ 

GeV -

Wide open spectra

Co-annihilation

WIMP-like multiplet

Accidental Dark Matter

DM SM singlet  $e^+e^- \rightarrow Z' \rightarrow \chi \chi$ 

Generic leptons+missing momentum

Soft-objects + missing momentum

Short (disappearing) tracks

Mono-photon

Electroweak
Precision
Tests



ANGULAR DISTRIBUTION



χ is heavy/light new physics

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{g^2 C_{WW}^{\text{eff}}}{8} W_{\mu\nu}^a \Pi(-D^2/m_{\chi}^2) W^{a\mu\nu} + \frac{g'^2 C_{BB}^{\text{eff}}}{8} B_{\mu\nu} \Pi(-\partial^2/m_{\chi}^2) B^{\mu\nu}$$

1504.03402



ANGULAR DISTRIBUTION



χ is heavy/light new physics

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{g^2 C_{WW}^{\text{eff}}}{8} W_{\mu\nu}^a \Pi(-D^2/m_{\chi}^2) W^{a\mu\nu} + \frac{g'^2 C_{BB}^{\text{eff}}}{8} B_{\mu\nu} \Pi(-\partial^2/m_{\chi}^2) B^{\mu\nu}$$

1504.03402

HEAVY NEW PHYSICS (EFT LIMIT)

$$\Pi\left(\frac{s}{m^2}\right) \sim \frac{1}{480\pi^2} \cdot \frac{s}{m^2}$$
 
$$C_{WW}^{\rm eff} = \kappa(n^3-n)/6, \ C_{BB}^{\rm eff} = \kappa 2nY^2$$
 
$$\kappa = \frac{1}{2},1,4,8 \ \text{for RS,CS,MF,DF}$$

$$W = \frac{g^2 C_{WW}^{\text{eff}}}{960\pi^2} \frac{m_W^2}{m_\chi^2} \quad Y = \frac{g'^2 C_{BB}^{\text{eff}}}{960\pi^2} \frac{m_W^2}{m_\chi^2}$$

EFFECTS GROW WITH ENERGY



ANGULAR DISTRIBUTION



χ is heavy/light new physics

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{g^2 C_{WW}^{\text{eff}}}{8} W_{\mu\nu}^a \Pi(-D^2/m_{\chi}^2) W^{a\mu\nu} + \frac{g'^2 C_{BB}^{\text{eff}}}{8} B_{\mu\nu} \Pi(-\partial^2/m_{\chi}^2) B^{\mu\nu}$$

#### LIGHT NEW PHYSICS

$$\Pi(x) = \begin{cases} -\frac{8(x-3)+3x(\frac{x-4}{x})^{3/2}\log(\frac{1}{2}((\sqrt{\frac{x-4}{x}}-1)x+2))}{144\pi^2x} & \text{(scalars)} \\ -\frac{12+5x+3\sqrt{\frac{x-4}{x}}(x+2)\log(\frac{1}{2}((\sqrt{\frac{x-4}{x}}-1)x+2))}{288\pi^2x} & \text{(fermions)} \end{cases}$$



PRECISION PHYSICS

#### 1504.03402

HEAVY NEW PHYSICS (EFT LIMIT)

$$\Pi\left(\frac{s}{m^2}\right) \sim \frac{1}{480\pi^2} \cdot \frac{s}{m^2}$$

$$C_{WW}^{\rm eff} = \kappa (n^3-n)/6, \ C_{BB}^{\rm eff} = \kappa 2nY^2$$
 
$$\kappa = \frac{1}{2}, 1, 4, 8 \ \text{for RS,CS,MF,DF}$$

$$W = \frac{g^2 C_{WW}^{\text{eff}}}{960\pi^2} \frac{m_W^2}{m_\chi^2} \quad Y = \frac{g'^2 C_{BB}^{\text{eff}}}{960\pi^2} \frac{m_W^2}{m_\chi^2}$$

EFFECTS GROW WITH ENERGY



ANGULAR DISTRIBUTION











ANGULAR DISTRIBUTION



$$|\cos\theta| < 0.95$$
 for all final states  $\chi^2$  over 10 bins

$$\chi^2 = \sum_{i=1}^{10} \frac{\left(N_i^{\rm SM+BSM} - N_i^{\rm SM}\right)^2}{N_i^{\rm SM} + \left(\epsilon_i N_i^{\rm SM}\right)^2}$$

$$\int$$
Systematic Unc.



ANGULAR DISTRIBUTION

 $|\cos\theta| < 0.95$  for all final states  $\chi^2$  over 10 bins

$$\chi^2 = \sum_{i=1}^{10} \frac{\left(N_i^{\rm SM+BSM} - N_i^{\rm SM}\right)^2}{N_i^{\rm SM} + \left(\epsilon_i N_i^{\rm SM}\right)^2}$$
 Systematic Unc.





beams polarization is beneficial to increase NP effects



### ANGULAR DISTRIBUTION

| $\chi$                         | $m_{\chi}^{(\mathrm{DM})}$ [TeV] | $m_{\chi}^{(\mathrm{CLIC}-3)}$ [TeV] |
|--------------------------------|----------------------------------|--------------------------------------|
| $(1,2,1/2)_{\rm DF}$           | 1.1                              | 1.5                                  |
| $(1,3,\epsilon)_{\mathrm{CS}}$ | 1.55                             | _                                    |
| $(1,3,\epsilon)_{\mathrm{DF}}$ | 2.0                              | 2.1 **                               |
| $(1,3,0)_{\rm MF}$             | 2.8                              | 1.7                                  |
| $(1,5,\epsilon)_{\mathrm{CS}}$ | 6.6                              | 1.7                                  |
| $(1,5,\epsilon)_{\mathrm{DF}}$ | 6.6                              | 4.1                                  |
| $(1,5,0)_{MF}$                 | 11                               | 3.0                                  |
| $(1,7,\epsilon)_{\mathrm{CS}}$ | 16                               | 2.5                                  |
| $(1,7,\epsilon)_{\mathrm{DF}}$ | 16                               | 6.8                                  |





Higgsino of split-SUSY (heavy sfermions)

Wino of split-SUSY (heavy sfermions)

Accidental Dark Matter 3-plet Dirac Fermion



### ANGULAR DISTRIBUTION

| $\chi$                         | $m_{\chi}^{(\mathrm{DM})}$ [TeV] | $m_{\chi}^{(\mathrm{CLIC}-3)}$ [TeV] |
|--------------------------------|----------------------------------|--------------------------------------|
| $(1,2,1/2)_{\rm DF}$           | 1.1                              | 1.5                                  |
| $(1,3,\epsilon)_{\mathrm{CS}}$ | 1.55                             | _                                    |
| $(1,3,\epsilon)_{\mathrm{DF}}$ | 2.0                              | 2.1 **                               |
| $(1,3,0)_{\rm MF}$             | 2.8                              | 1.7                                  |
| $(1,5,\epsilon)_{\mathrm{CS}}$ | 6.6                              | 1.7                                  |
| $(1,5,\epsilon)_{\mathrm{DF}}$ | 6.6                              | 4.1                                  |
| $(1,5,0)_{\rm MF}$             | 11                               | 3.0                                  |
| $(1,7,\epsilon)_{\mathrm{CS}}$ | 16                               | 2.5                                  |
| $(1,7,\epsilon)_{\mathrm{DF}}$ | 16                               | 6.8                                  |

Higgsino of split-SUSY (heavy sfermions)

Wino of split-SUSY (heavy sfermions)

Accidental Dark Matter 3-plet Dirac Fermion









#### ANGULAR DISTRIBUTION

| $\chi$                         | $m_{\chi}^{(\mathrm{DM})}$ [TeV] | $m_{\chi}^{(\mathrm{CLIC}-3)}$ [TeV] |
|--------------------------------|----------------------------------|--------------------------------------|
| $(1,2,1/2)_{DF}$               | 1.1                              | 1.5                                  |
| $(1,3,\epsilon)_{\mathrm{CS}}$ | 1.55                             | _                                    |
| $(1,3,\epsilon)_{\mathrm{DF}}$ | 2.0                              | 2.1 **                               |
| $(1,3,0)_{\rm MF}$             | 2.8                              | 1.7                                  |
| $(1,5,\epsilon)_{\mathrm{CS}}$ | 6.6                              | 1.7                                  |
| $(1,5,\epsilon)_{\mathrm{DF}}$ | 6.6                              | 4.1                                  |
| $(1,5,0)_{\rm MF}$             | 11                               | 3.0                                  |
| $(1,7,\epsilon)_{\mathrm{CS}}$ | 16                               | 2.5                                  |
| $(1,7,\epsilon)_{\mathrm{DF}}$ | 16                               | 6.8                                  |

Higgsino of split-SUSY (heavy sfermions)

Wino of split-SUSY (heavy sfermions)

Accidental Dark Matter 3-plet Dirac Fermion

### Polarization is very advantageous









#### ANGULAR DISTRIBUTION

| $\chi$                         | $m_{\chi}^{(\mathrm{DM})}$ [TeV] | $m_{\chi}^{(\mathrm{CLIC}-3)}$ [TeV] |
|--------------------------------|----------------------------------|--------------------------------------|
| $(1,2,1/2)_{\rm DF}$           | 1.1                              | 1.5                                  |
| $(1,3,\epsilon)_{\mathrm{CS}}$ | 1.55                             | _                                    |
| $(1,3,\epsilon)_{\mathrm{DF}}$ | 2.0                              | 2.1 **                               |
| $(1,3,0)_{\rm MF}$             | 2.8                              | 1.7                                  |
| $(1,5,\epsilon)_{\mathrm{CS}}$ | 6.6                              | 1.7                                  |
| $(1,5,\epsilon)_{\mathrm{DF}}$ | 6.6                              | 4.1                                  |
| $(1,5,0)_{\rm MF}$             | 11                               | 3.0                                  |
| $(1,7,\epsilon)_{\mathrm{CS}}$ | 16                               | 2.5                                  |
| $(1,7,\epsilon)_{\mathrm{DF}}$ | 16                               | 6.8                                  |

Higgsino of split-SUSY (heavy sfermions)

Wino of split-SUSY (heavy sfermions)

Accidental Dark Matter 3-plet Dirac Fermion

### Polarization is very advantageous











### ANGULAR DISTRIBUTION













ANGULAR DISTRIBUTION

 $|\cos\theta| < 0.95$  for all final states  $\chi^2$  over 10 bins

$$\chi^2 = \sum_{i=1}^{10} \frac{\left(N_i^{\rm SM+BSM} - N_i^{\rm SM}\right)^2}{N_i^{\rm SM} + \left(\epsilon_i N_i^{\rm SM}\right)^2}$$
 Systematic Unc.



