Doubly-charged scalars phenomenology and perspectives at CLIC

Luca Panizzi

Uppsala University, Sweden

based on


A. Crivellin, M. Ghezzi, LP, G. M. Pruna and A. Signer Low- and high-energy phenomenology of a doubly charged scalar arXiv:1807.10224 [hep-ph], accepted by PRD

and

M. Ghezzi, LP, G. M. Pruna

SU(2) singlets and neutrino mass from higher dimensional operators section 7.3 of J. de Blas *et al.*,"The CLIC Potential for New Physics," arXiv:1812.02093 [hep-ph]

The Standard Model is complete but are we happy with it?



There must be new physics

and most probably it's already in our reach or within the reach of future colliders!

And if there's new physics we should be able to observe new particles (hopefully soon!)

The Standard Model is complete but are we happy with it?

There must be new physics

and most probably it's already in our reach or within the reach of future colliders!

And if there's new physics we should be able to observe new particles (hopefully soon!)

Let's focus on mechanisms for neutrino mass generation!

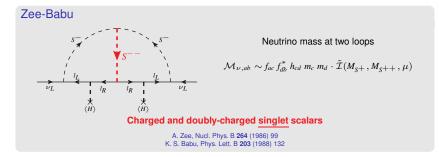
Neutrino mass generation mechanisms

and which BSM states they predict

Type-II see saw

$$\mathcal{L}_{Y} = -f_{ij} \left(l_{i}^{T} C i \tau_{2} \boldsymbol{\tau} l_{j} \right) \cdot \boldsymbol{\Sigma} = -f_{ij} \left(l_{i}^{T} C i \tau_{2} \boldsymbol{\Delta} l_{j} \right) \quad \text{with} \quad \boldsymbol{\Delta} \equiv \boldsymbol{\tau} \cdot \boldsymbol{\Sigma} = \begin{pmatrix} S^{+} & \sqrt{2} S^{++} \\ \sqrt{2} S^{0} & -S^{+} \end{pmatrix}$$
The triplet vev $\langle \boldsymbol{\Delta} \rangle = \begin{pmatrix} 0 & 0 \\ w & 0 \end{pmatrix}$ leads to Majorana mass for neutrinos $m_{ij}^{\nu} \propto f_{ij} w$
Neutral, charged and doubly-charged scalars as part of a triplet

T. P. Cheng and L. F. Li, Phys. Rev. D 22 (1980) 2860


Neutrino mass generation mechanisms

and which BSM states they predict

Type-II see saw

$$\mathcal{L}_{Y} = -f_{ij} \left(l_{i}^{T} C i \tau_{2} \boldsymbol{\tau} l_{j} \right) \cdot \boldsymbol{\Sigma} = -f_{ij} \left(l_{i}^{T} C i \tau_{2} \boldsymbol{\Delta} l_{j} \right) \quad \text{with} \quad \boldsymbol{\Delta} \equiv \boldsymbol{\tau} \cdot \boldsymbol{\Sigma} = \begin{pmatrix} S^{+} & \sqrt{2} \, \boldsymbol{S}^{++} \\ \sqrt{2} \, \boldsymbol{S}^{0} & -S^{+} \end{pmatrix}$$

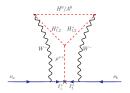
The triplet vev $\langle \boldsymbol{\Delta} \rangle = \begin{pmatrix} 0 & 0 \\ w & 0 \end{pmatrix}$ leads to Majorana mass for neutrinos $m_{ij}^{\nu} \propto f_{ij} w$
Neutral, charged and doubly-charged scalars as part of a triplet

T. P. Cheng and L. F. Li, Phys. Rev. D 22 (1980) 2860

Neutrino mass generation mechanisms

and which BSM states they predict

Minimal effective model



Neutrino mass at two loops in the effective theory (three loops in UV realisations)

$$\mathcal{A}_{\nu,ab}^{2\text{-loop}} = \frac{2 \xi m_a m_b M_s^2 f_{ab}(1+\delta_{ab})}{\Lambda^3} \cdot \tilde{\mathcal{I}}(M_W, M_S, \mu)$$

One doubly-charged singlet scalar

S. F. King, A. Merle and LP, JHEP 1411 (2014) 124 T. Geib, S. F. King, A. Merle, J. M. No and LP, Phys. Rev. D 93 (2016) no.7, 073007

Example of UV realisation: the "cocktail model"

M. Gustafsson, J. M. No and M. A. Rivera, Phys. Rev. Lett. 110 (2013) no.21, 211802

Further scenarios:

- Left-right symmetric models (triplet)
- Georgi-Machacek (triplet)
- Little Higgs (triplet)
- Neutrinos and dark matter (quadruplet)

J. C. Pati and A. Salam, Phys. Rev. D 10 (1974) 275

H. Georgi and M. Machacek, Nucl. Phys. B 262 (1985) 463

N. Arkani-Hamed et al, JHEP 0208 (2002) 021

S. Bhattacharya et al, Phys. Rev. D 95 (2017) no.5, 055003

Further scenarios:

- Left-right symmetric models (triplet)
- Georgi-Machacek (triplet)
- Little Higgs (triplet)
- Neutrinos and dark matter (quadruplet)

J. C. Pati and A. Salam, Phys. Rev. D **10** (1974) 275 H. Georgi and M. Machacek, Nucl. Phys. B **262** (1985) 463 N. Arkani-Hamed *et al*, JHEP **0208** (2002) 021 S. Bhattacharya *et al*, Phys. Rev. D **95** (2017) no.5, 055003

Doubly-charged scalars are predicted in various models of new physics

embedded in different representations \rightarrow different phenomenological consequences

- Different production channels, and for the same channel, different cross-sections
- Different dominant interactions —> different dominant decay modes

Further scenarios:

- Left-right symmetric models (triplet)
- Georgi-Machacek (triplet)
- Little Higgs (triplet)
- Neutrinos and dark matter (quadruplet)

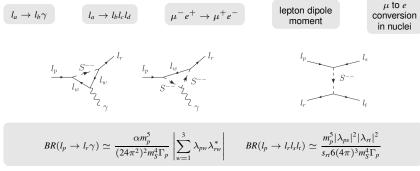
J. C. Pati and A. Salam, Phys. Rev. D **10** (1974) 275 H. Georgi and M. Machacek, Nucl. Phys. B **262** (1985) 463 N. Arkani-Hamed *et al*, JHEP **0208** (2002) 021 S. Bhattacharya *et al*, Phys. Rev. D **95** (2017) no.5, 055003

Doubly-charged scalars are predicted in various models of new physics

embedded in different representations \rightarrow different phenomenological consequences

- Different production channels, and for the same channel, different cross-sections
- Different dominant interactions —> different dominant decay modes

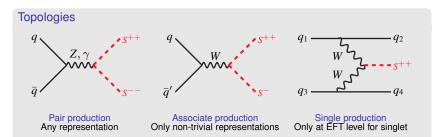
Considering singlet representation:


$$(D_{\mu}S^{++})^{\dagger}(D^{\mu}S^{++}) + (\lambda_{ab}\overline{(l_R)}_a^c(l_R)_bS^{+} + h.c.)$$

- 1) Bounds from low energy
- 2) Bounds at the LHC and perspectives for higher luminosity
- 3) What is the potential of CLIC for discovering them?

Is it possible to reinterpret results for different representations?

Luca Panizzi

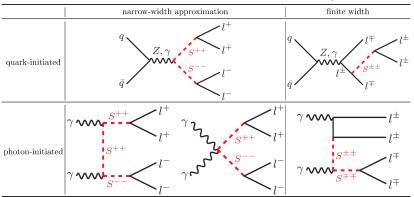

Constraints from low energy

But some low-energy bounds are affected also by singly-charged scalars!

Current searches at LHC

ATLAS (only 13 TeV)

 Pair production with decay into *e* or μ Bounds for BRs = 100%: singlet around ~600 GeV triplet around ~700 GeV
 Eur. Phys. J. C 78 (2018) no.3, 199

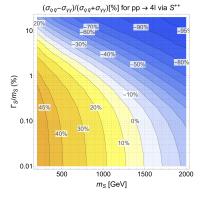

 Pair production with decay into WW Bound above ~200 GeV (triplet) arXiv:1808.01899 [hep-ex]

CMS (only 13 TeV)

 Pair and associate production with decay into leptons
 Pair production bounds (triplet): above ~650 GeV (decays into e/μ) above ~400 GeV (decays with τ)
 Associate production bounds: above ~700 GeV (decays into e/μ) above ~450 GeV (decays with τ)
 CMS-PAS-HIG-16-036

Photon contribution and width effects

Singlet case

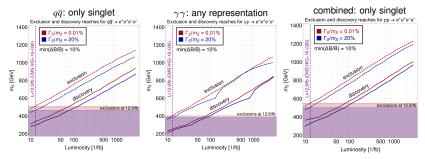


- Photon contribution included in the LUXQED PDFs
- no gluon-initiated topologies for S^{++} singlet
- Allowing for non-resonant contributions and new topologies which are negligible in the NWA

Photon contribution and width effects

Parametrisation of the cross-section:

$$\sigma_{pp \to l_a^+ l_b^+ l_c^- l_d^-}(m_S, \Gamma_S, \lambda_{ab,cd}) = \lambda_{ab}^2 \lambda_{cd}^2 \left(\hat{\sigma}_{qq}(m_S, \Gamma_S, g_{ZSS}) + \hat{\sigma}_{\gamma\gamma}(m_S, \Gamma_S) \right)$$

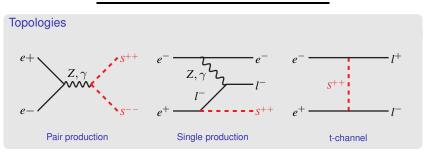


- Width as a free parameter $(\sum_{ab,cd} \Gamma_S^{part} \leq \Gamma_S)$
- Photon contribution can be sizable, especially in the large width regime
- Not possible to factorise g_{ZSS}: total results only valid for singlet S⁺⁺

Bounds and projections at LHC

Recasting of CMS-PAS-HIG-16-036

Results for decay into $e + e - e^{-1}$

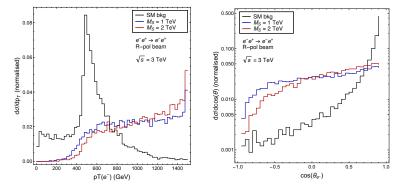


- Current combined recast bound above ~500 GeV
- Projected combined bound for high-luminosity around ~1200 GeV
- Projected combined discovery reach aroud ~1000 GeV
- Weak width dependence (due to cut on invariant mass window of SS dileptons)

For non-trivial representations bounds and discovery slightly higher due to larger ZSS coupling

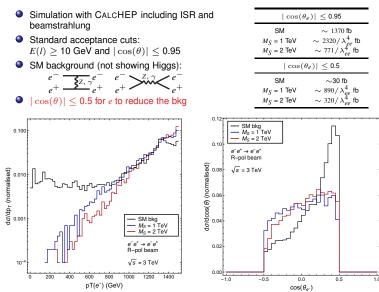
Signatures at CLIC

	Stage I		Stage II	Stage III
$\mathcal{L}^{\sqrt{s}}$	380 GeV	350 GeV	1.5 TeV	3 TeV
	0.9/ab	0.1/ab	2.5/ab	5/ab

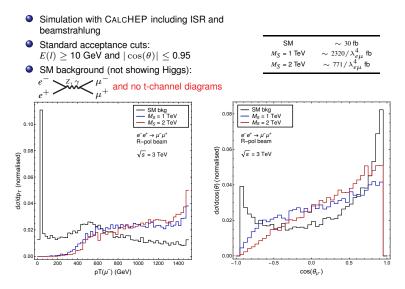

- Pair production limited by phase space to probe $M_S < 1500 \text{ GeV}$
- Single production can probe twice as much (in principle)
- The t-channel probes the dependence of mass-Yukawa up to any mass, but requires S⁺⁺ to interact with electrons

Cross-sections and distributions for e^-e^+ final state @ $\sqrt{s} = 3$ TeV

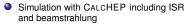
- Simulation with CALCHEP including ISR and beamstrahlung
- Standard acceptance cuts: $E(l) \ge 10 \text{ GeV} \text{ and } |\cos(\theta)| \le 0.95$
- SM background (not showing Higgs):
 - $\stackrel{e^-}{\underbrace{ z_{,\gamma}}_{e^+}} \stackrel{e^-}{\underbrace{ z_{,\gamma}}_{e^+}} \stackrel{e^-}{\underbrace{ e^+}} \stackrel{z_{,\gamma}}{\underbrace{ z_{,\gamma}}_{e^+}} \stackrel{e^-}{\underbrace{ e^+}}$


$$\begin{split} |\cos(\theta_e)| &\leq 0.95\\ \text{SM} &\sim 1370 \text{ fb}\\ M_S = 1 \text{ TeV} &\sim 2320/\lambda_{ee}^4 \text{ fb}\\ M_S = 2 \text{ TeV} &\sim 771/\lambda_{ee}^4 \text{ fb} \end{split}$$

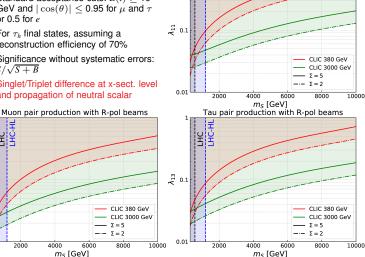
• Peak at $p_T \sim 500$ GeV due to ISR+beamstrahlung


Luca Panizzi

Cross-sections and distributions for e^-e^+ final state @ $\sqrt{s} = 3$ TeV


Luca Panizzi

Cross-sections and distributions for $\mu^{-}\mu^{+}$ final state @ $\sqrt{s} = 3$ TeV



Luca Panizzi

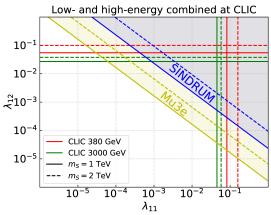
Electron pair production with R-pol beams

- Standard acceptance cuts: E(l) > 10GeV and $|\cos(\theta)| \leq 0.95$ for μ and τ or 0.5 for e
- For τ_h final states, assuming a reconstruction efficiency of 70%
- Significance without systematic errors: $S/\sqrt{S+B}$
- Singlet/Triplet difference at x-sect. level and propagation of neutral scalar

HOH

Luca Panizzi

2000


 λ_{12}

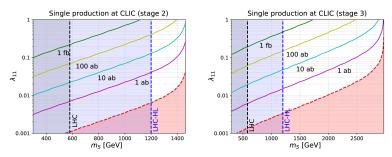
0.1

0.01

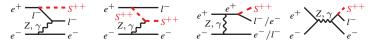
Complementarity with low energy

Yukawa couplings with electrons and muons

At CLIC the two Yukawas are mostly explored independently


• Through $\mu \to 3e$ the product of the Yukawa is constrained: $BR(l_p \to l_r l_s l_t) \simeq \frac{m_p^5 |\lambda_{ps}|^2 |\lambda_{rt}|^2}{s_{rt} 6(4\pi)^3 m_s^4 \Gamma_p}$

 $BR(\mu \rightarrow 3e)_{SINDRUM} < 10^{-12}$ and $BR(\mu \rightarrow 3e)_{Mu3e} < 5 \times 10^{-15}$


Luca Panizzi

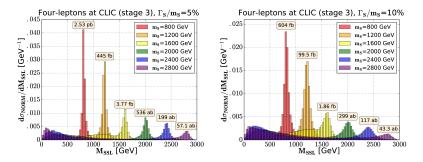
Single production

Cross-section, unpolarised beams

Contributions from different topologies with different kinematics

Interference between topologies with Yukawa and gauge couplings

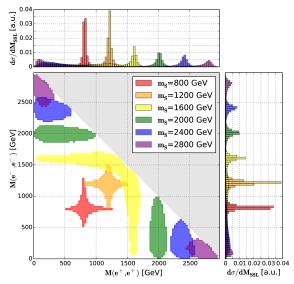
After decay of S⁺⁺, same signature as pair production topologies (relevant for large width)
 Results for singlet cannot be easily reinterpreted for triplet


Luca Panizzi

Single production

Invariant mass of same-sign leptons

 $e^+e^- \rightarrow 4e$


Cross-sections for $\lambda_{11} = 1$ and binning of 30 GeV

Shoulder at low invariant mass appearing when \sqrt{s} is below the threshold for pair production

Single production

Invariant mass of same-sign leptons

Conclusions

- Doubly-charged scalars can play a role in the mechanism for neutrino mass generation and are predicted by various BSM models
- Constraints on couplings and masses from both low energy and LHC
- Room for further improvement of the bounds (or hopefully a discovery) with current experiments

Conclusions

- Doubly-charged scalars can play a role in the mechanism for neutrino mass generation and are predicted by various BSM models
- Constraints on couplings and masses from both low energy and LHC
- Room for further improvement of the bounds (or hopefully a discovery) with current experiments

Perspectives at CLIC

- Direct production (pair and single) and contributions to SM processes (t-channel)
- Potentially larger sensitivity to masses and couplings than LHC and its upgrades
- Results with minimal setup: more realistic treatment is needed