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Outline

« Scientific context of positron acceleration in plasma

« Experimental progress achieved in plasma-based positron
acceleration

» High-field positron acceleration in nonlinear regime

» Acceleration of a distinct positron bunch (in uniform and hollow
plasmas)

» Transverse wakefields in hollow plasma channels

« Challenges and path forward



Scientific context



Plasmas in nonlinear regime are asymmetric
accelerators

Plasma acceleration schemes (both laser-driven and particle-beam-driven) are promising
candidates for an advanced linear collider. But plasmas are asymmetric accelerators: there are
profound difference between electron and positron acceleration in plasmas.
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Exception

The plasma electrons are mobile but the ions are not. ,
Linear plasma waves

The symmetry of the accelerating mechanism is broken. are symmetrical.




. Plasmas in nonlinear regime are asymmetric
accelerators

Electron-driven or laser-driven nonlinear blowout wakes:

Plasma Wake

Directi
Drive Bunch = o

But the field is defocusing in this region.



. Plasmas in nonlinear regime are asymmetric
accelerators

Electron-driven or laser-driven nonlinear blowout wakes:

Plasma Wake

Drive Bunch Risction

Tiny volume where it's simultaneously accelerating and focusing. But E,
varies rapidly in this volume, both transversely and longitudinally. -



. Plasmas in nonlinear regime are asymmetric
accelerators

Electron-driven or laser-driven nonlinear blowout wakes:

Plasma Wake

Drive Bunch Risction

Transverse force is highly nonlinearinr
- emiftance growth



Experimental progress in plasma-based
positfron acceleration
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Spencer Gessner (left) and Sebastien Corde (right) at FACET tunnel, SLAC.
Image source: SLAC National Accelerator Laboratory

« A short and intense positron beam is needed for the experiment.

« Positrons originate from the electromagnetic shower produced when a 20.35
GeV electron beam passes through a thick tungsten alloy target.

« Separate bunch compressor in Sector 10 fo compress the positron bunch.

* First experiment to use compressed and short positron beam suited for PWFA.



Positron acceleration in uniform plasma

Experimental set-up:

Quadrupole
Final Focus Doublet Vacuum pipe
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Positron acceleration In

« Unexpected result: a large number

of positrons are accelerated.

« Accelerated positrons form a@
spectrally-distinct peak with an
energy gain of 5 GeV.

« Energy spread can be as low as 1.8%

(r.m.s.).

Experimental results in 1.3 m plasma

uniform plasma
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Positron acceleration in uniform plasma

QuIckPIC simulations: loaded vs unloaded wake (truncated bunch)
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BelRY888ing also affects fransi@FssiAGIds for positron driven wakes!

S. Corde et al., Nature 524, 442 (2015)
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Positron acceleration in uniform plasma

Particle deceleration — wake excitation:

» Positrons decelerated by up to
10 GeV or greater.

« Can be used to quantify the
energy transferred to the
plasma wave, and then the
fraction of this energy being
extracted by the accelerated
peak.

* Energy extraction efficiency of
about 30% is deduced.
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Positron acceleration in uniform plasma

For multfi-stage plasma-based positron acceleration:
« need to demonstrate the acceleration of a distinct bunch of positrons (trailing)
* need a two-bunch experimental setup (drive + trailinQ)
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A. Doche et al., Scientific Reports 7, 14180 (2017)



Positron acceleration in uniform plasma

By varying incoming emittance, experiment spans nonlinear to quasi-linear regime

Low emittance
nonlinear case
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High emittance
quasi-linear case
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Positron acceleration in hollow plasma channels

An alternative idea: the hollow plasma
channel, a tfube of plasma

« Beams propagate in the center,
where there is no plasma

 AS O conseguence, no transverse
force in the channel
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. Positron acceleration in hollow plasma channels
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Hollow channels provide large accelerating
fields without focusing fields.
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Positron acceleration in hollow plasma channels

Positron Beam  Gold Mirror
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. Positron acceleration in hollow plasma channels

We measure changes to the beam
as the beam s franslated in the
transverse directions x and vy. The
beam size increases when the beam
interacts with the plasma channel.
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Both the Kick Map and Beam Aread
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Measurement (Volcano Plot) are e
consistent with an annular plasma
channel.
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Positron acceleration in hollow plasma channels

Hollow plasma channel with two beames:
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At a bunch separation of 400 microns, the trailing bunch gains about
20 MeV on average, while the drive beam loses about 11 MeV.
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Typical CLIC transverse wakefields per offset in structures:
~1-100 V/pC/m/mm

Hollow channel (500 um diameter at 3 x 101 cm9):
~150 V/m~2/particle = ~1 000 000 V/pC/m/mm

> Experimental measurement [C. Lindstrgm
et al., 2018] of transverse wakefield in
hollow plasma channel largely agrees
with theoretical model [C. Schroeder et
al., Phys. Rev. Lett. 82, 1177 (1999)].

» Need mitigation mechanisms for
transverse instability in hollow plasma
channels.

C. Lindstrem ef al., Phys. Rev.

Positron acceleration in hollow plasma channels
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Challenges and path forward



Challenges for quasi-linear plasma wakefield

» Plasma density perturbation from a drive particle beam in the linear regime:

(e, ) = 1 /€ Rasive (€7) sinky (€ — €1)] kpde”

» How to accelerate trailing positron bunch in quasi-linear plasma wakefielde

d’o, €2
; = —Kort+—
dz o

(envelope equation)

» Need matched trailing positron bunch = stable propagation for trailing positron bunch, otherwise

the bunch collapses.

Possible solution: high emittance or low charge

- High emittance not acceptable solution, low
charge may be acceptable with bunch train and
energy recovery.
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Challenges for nonlinear plasma wakefield

Front | 1 ¥ | Back

Conventional wisdom: fransverse force must be 02 | | | |
linear in r to allow for emittance preservation. = Wfl‘l b) y emittance "
T o109 e -4
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For positrons in the nonlinear regime, the = . 1
. . . . . w

focusing force is generally nonlinear in r, and is oty " 1. - o ; 5.
slice dependent. z (m) z (m)

P. Muggli et al., Phys. Rev. Lett 101, 055001 (2008)

- emittance growth

propagation direction
R —

Plasma wake shaping using e.g. doughnut- L doughnuIe- beam ]

shaped drivers
- linear focusing force

central electron _|
filament

Potential for high efficiency and preserved
emiffance in nonlinear plasma wakefield
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Challenges for nonlinear plasma wakefield

Front

Conventional wisdom: transverse force must be

Back
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©
T o103
. . . . e
For positrons in the nonlinear regime, the =
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- emittance growth

Plasma wake shaping using e.g. doughnut-
shaped drivers
- linear focusing force

Positron 1|
i focusing region J} 4
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Potential for high efficiency and preserved
emiffance in nonlinear plasma wakefield
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* Linear focusing force for e*

* Width of linear focusing region on the order
of the skin depth

* Focusing varies but may not compromise
divergence/emittance growth

Betatron cooling?
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« e+ can accelerate at the front

* Beam loading is possible
* Energy spread growth can be controlled
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Challenges for hollow plasma channels

» Interbunch: effect of drive transverse wakefield on trailing positron bunch must be cancelled
by placing the trailing bunch at the zero crossing of the tfransverse wakefield.

» Intrabunch: tfransverse wakefield from the frailing on itself, requires instability mitigation:

« Standard method: external focusing and energy chirp (BNS damping).
» need research for higher focusing gradient optics

v

final dechirper to allow for higher chirp in the main plasma linac

« C. Lindstram’s optimization with 1% energy spread and 1 T pole field: reaching 1 GeV/m
requires large drive charge (~10 nC), don’t go to small channel diameters (~500 um ok,
requires 10-100 nm alignment tolerances.

« Study the use of flat geometries (flat beam and flat channel).

still requires external focusing

\ 4

« Coaxial geometries:
detuning achieved by nonlinear phase mixing, is

there a compromise to reach between nonlinear
emittance growth and instability mitigatione

v



Conclusion

Quasi-linear plasma Hollow plasma Nonlinear plasma
wakefield channels wakefield
How to accelerate low emittance How to mitigate How to preserve emittance?
beams with high efficiency? i ilities?
g Y transverse instabilitiese Doughnut-shaped wakes, weird

Multi-pulse, energy recovery. Position trailing bunch at zero- frailing bunch shaping, single-
crossing of transverse wakefield, stage accelerator, betatron
look for damping mechanisms, cooling.

flat channels.

> In-situ (in plasma) generation of positrons in FACET-II 15t phase

Futures experiments: > Use of electrons to study linear regime and hollow plasma channels

> 27d phase of FACET-II: delivery of positron beams to IP
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Thank you for your attention

28



