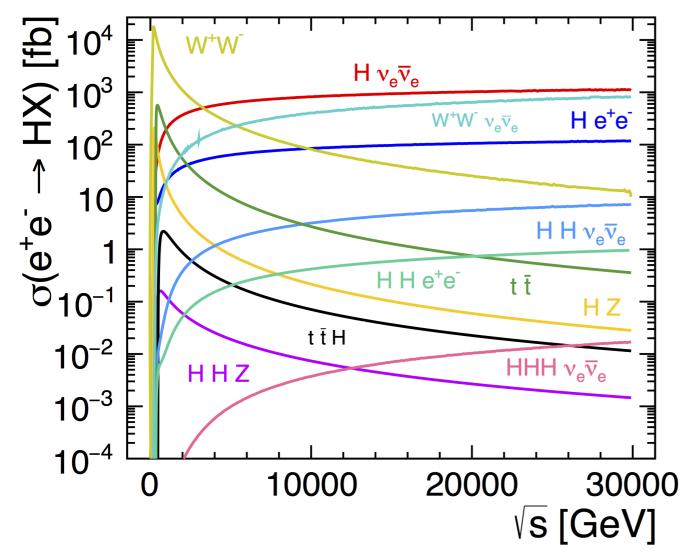

Multi-TeV yy colliders

Philipp Roloff (CERN)

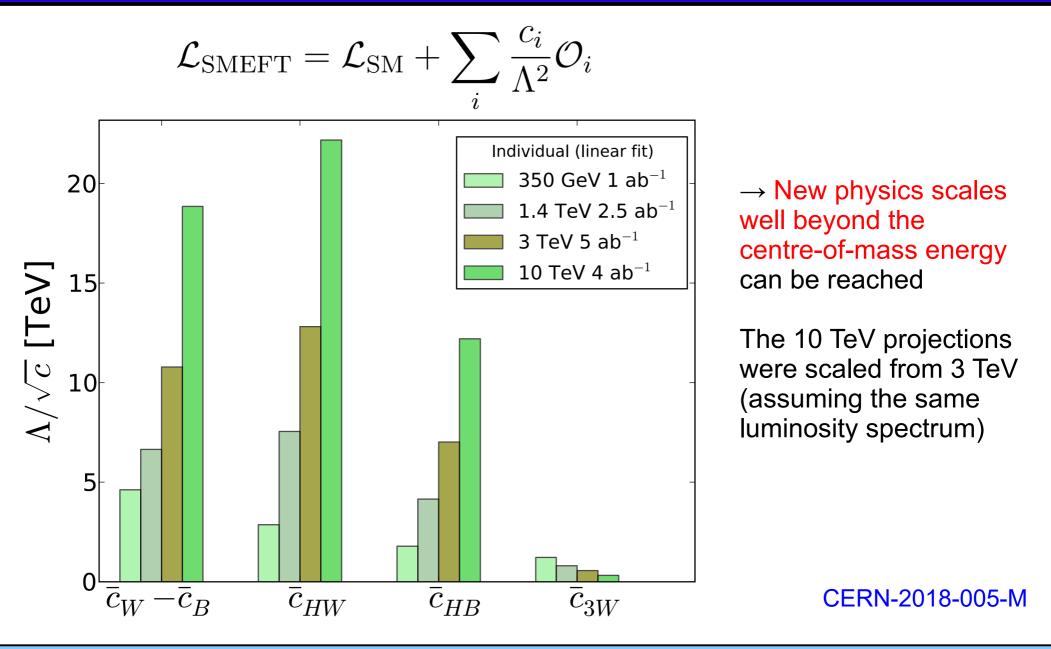
CLIC workshop 2019 Accelerator session



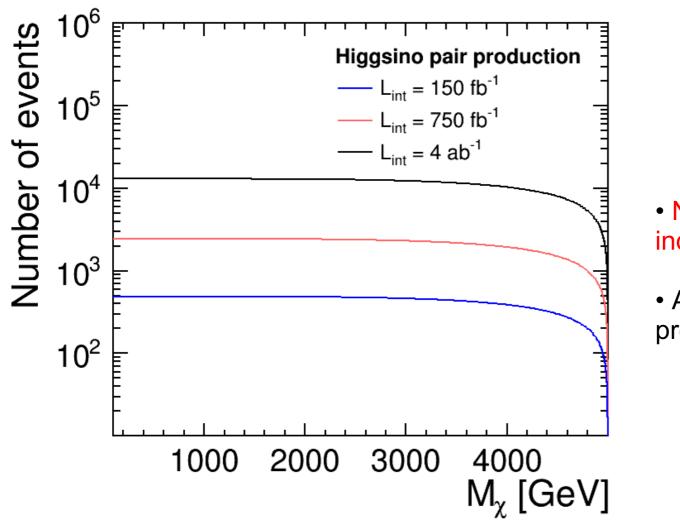
23/01/2019 CERN, Geneva

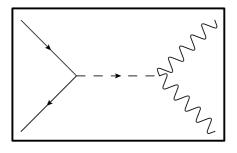
First, a few words on an e⁺e⁻ collider at 10 TeV...

Standard model processes


Two-fermion production

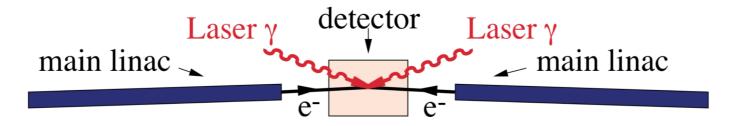
 (e.g. tt̄) scales as 1/s,
 similar for WW production
 → desired integrated
 luminosities exceed
 baseline CLIC stages


 A few ab⁻¹ at 10 TeV would improve the knowledge the Higgs self-coupling compared to 3 TeV → see talk by Ulrike Schnoor in the afternoon

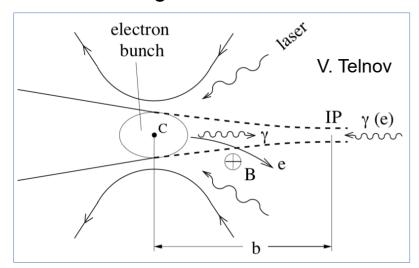

CERN-2018-005-M

Update: Higgs and WW production in 10 TeV e⁺e⁻ collisions

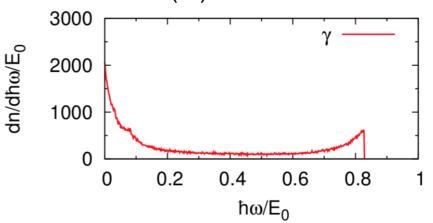
Heavy states

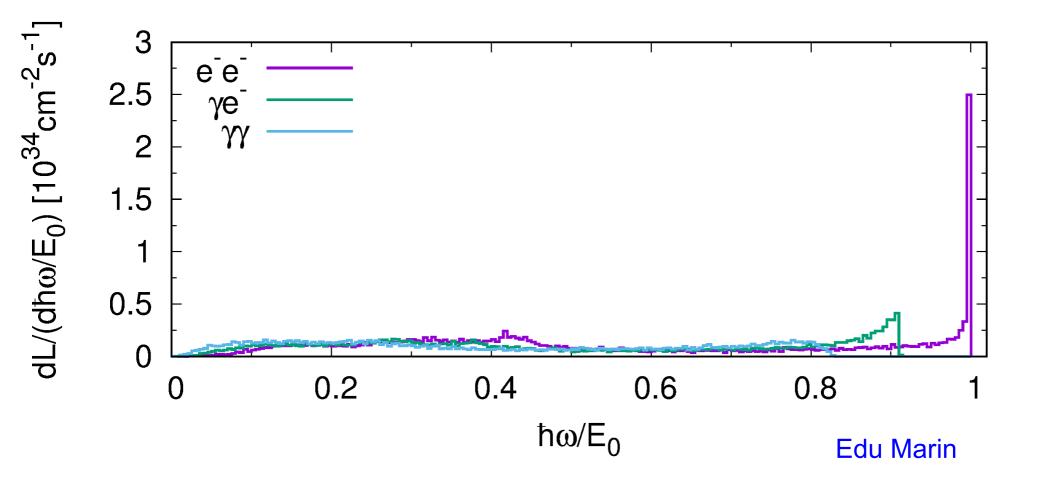

• Number of events almost independent of mass

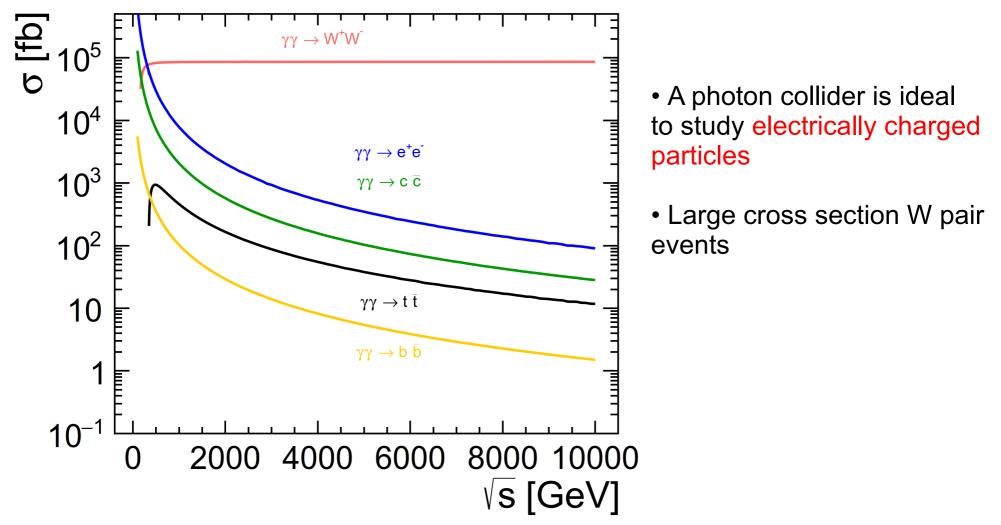
• A few ab⁻¹ needed for precision measurements


CERN-2018-005-M

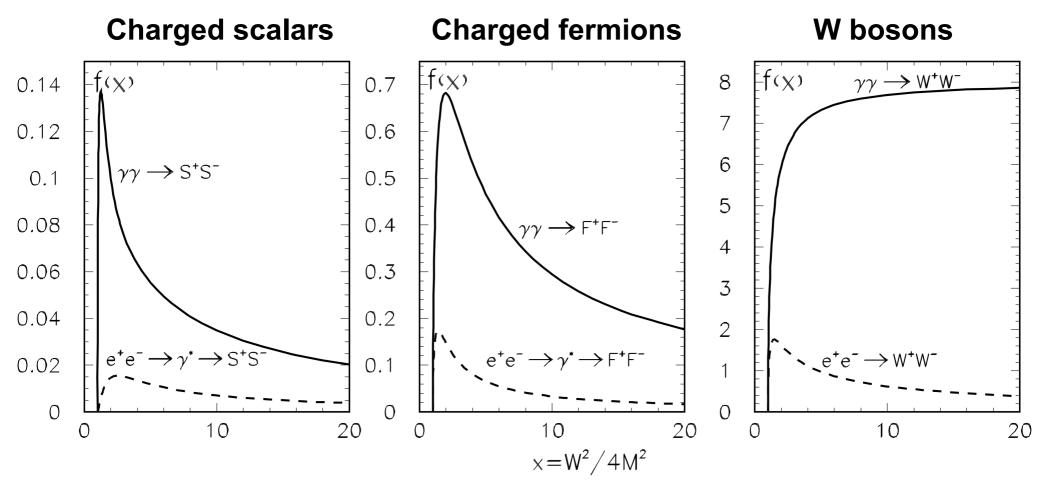
vy colliders


- An e⁺e⁻ collider requires high-gradient, high-efficient positron acceleration
- Possible alternative: γγ collider
- Discussed in the past as possible upgrade to a linear collider


High-energy photons are produced by Compton back-scattering off TeV e⁻ beams


The photon spectrum has a peak near $0.8E(e^{-})$

Luminosity spectra at 10 TeV

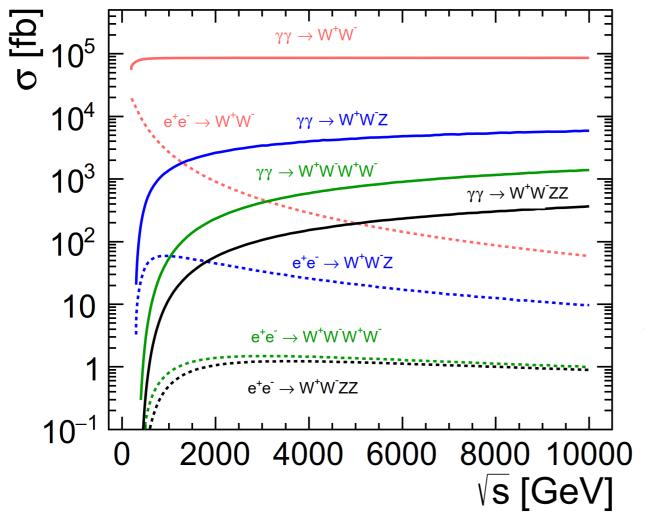


2-particle production in yy collisions

no beam polarisation

Comparison to e⁺e⁻ collisions

 $\sigma = (\pi \alpha^2 / M^2) f(x)$


no beam polarisation

23/01/2019

Philipp Roloff

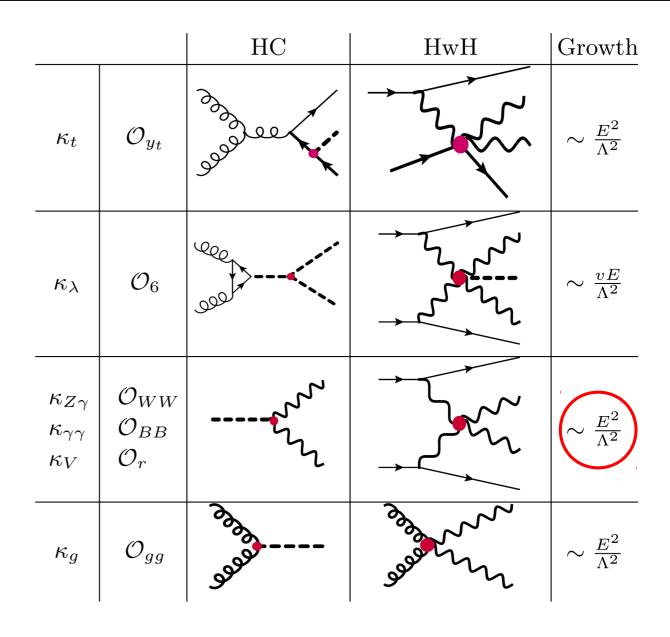
Multi-TeV yy-colliders

Multi-boson production in yy collisions

• $\gamma\gamma \rightarrow W^+W^-$: anomalous photon couplings to W boson λ_{γ} and $\Delta\kappa_{\gamma}$ (probably better than e^+e^- , under study)

• $\gamma\gamma \rightarrow W^+W^-ZZ/W^+W^-W^+W^-$: WW \rightarrow WW and ZZ \rightarrow ZZ scattering (strong benefit from high energy, 3 TeV CLIC similar to HL-LHC, need to be studied)

no beam polarisation

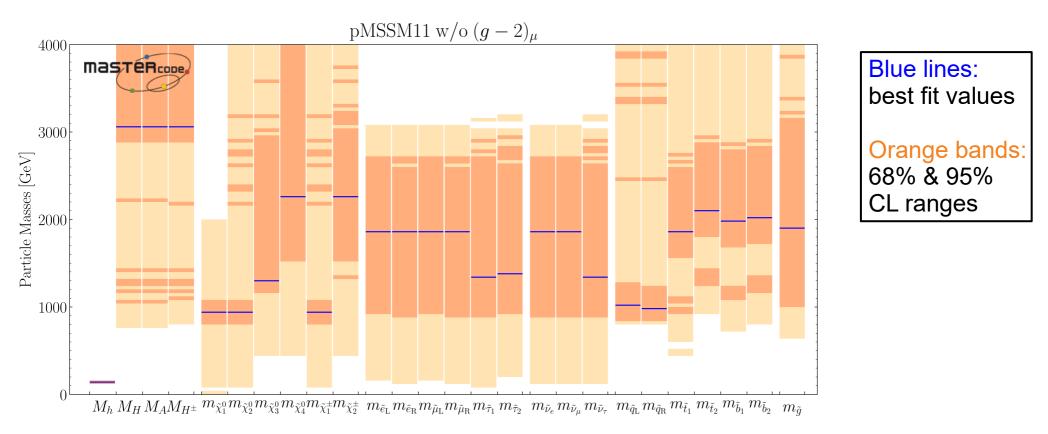

"Higgs physics" at high energy

HC: Higgs coupling HwH: High-energy process

 Higgs decays and high-energy processes probe the same operators

• Sensitivity of high-energy Probes rises with energy

Very interesting! To be studied...



arXiv:1812.09299

Multi-TeV yy-colliders

An example SUSY scenario

Example: Phenomenological MSSM with 11 parameters

• Global fit to current experimental data (LHC results, low-energy and flavour experiments, CDM measurements)

arXiv:1710.11091

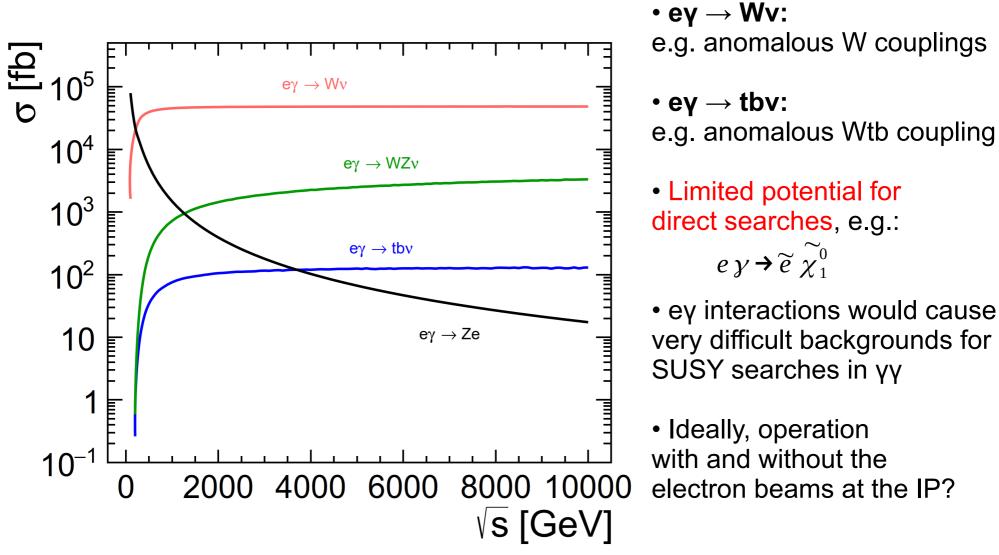
e⁺e⁻ vs γγ at 10 TeV (1)

Particle pair	Mass [GeV]	$\sigma(e^+e^- \rightarrow XX)$ [fb]		$\sigma(\gamma\gamma \rightarrow XX)$ [fb]	$\sigma(\gamma\gamma \rightarrow XX)$ [fb]
		unpol.	unpol.	$J_Z = 0$	$J_Z = 2$
$\widetilde{d}_{L}\widetilde{d}_{L}$	1009	0.35	0.04	0.002	0.08
	1006	0.51	0.70	0.04	1.4
$\widetilde{s}_{L}\widetilde{s}_{L}$	1009	0.35	0.04	0.002	0.08
$\widetilde{c}_{L}\widetilde{c}_{L}$	1006	0.51	0.70	0.04	1.4
$\widetilde{\mathbf{b}}_1 \widetilde{\mathbf{b}}_1$	1997	0.18	0.03	0.001	0.05
$ \widetilde{\widetilde{t}}_1 \widetilde{\widetilde{t}}_1 \\ \widetilde{\widetilde{t}}_1 \widetilde{\widetilde{t}}_1 $	1866	0.26	0.52	0.14	0.91
$ \begin{array}{c} \widetilde{e}_{L}\widetilde{e}_{L} \\ \widetilde{\nu}_{eL}\widetilde{\nu}_{eL} \\ \widetilde{\mu}_{L}\widetilde{\mu}_{L} \\ \widetilde{\nu}_{\mu L}\widetilde{\nu}_{\mu L} \\ \widetilde{\tau}_{1}\widetilde{\tau}_{1} \\ \widetilde{\nu}_{\tau}\widetilde{\nu}_{\tau} \end{array} $	1869	1.2	0.88	0.23	1.5
$\widetilde{\nu}_{eL}\widetilde{\nu}_{eL}$	1867	5.0	-	-	-
$\widetilde{\mu}_{\mathrm{L}}\widetilde{\mu}_{\mathrm{L}}$	1869	0.23	0.88	0.23	1.5
$\widetilde{v}_{\mu L}\widetilde{v}_{\mu L}$	1867	0.10	-	-	-
$\widetilde{\tau}_1 \widetilde{\tau}_1$	1328	0.21	1.06	0.11	2.0
$\underbrace{\widetilde{\nu}_\tau \widetilde{\nu}_\tau}_{-}$	1364	0.11	-	-	-
$\widetilde{d}_R \widetilde{d}_R$	988	0.08	0.04	0.002	0.09
$\tilde{u}_R \tilde{u}_R$	989	0.30	0.70	0.03	1.4
$\tilde{s}_R \tilde{s}_R$	988	0.08	0.04	0.002	0.09
$\widetilde{c}_R \widetilde{c}_R$	989	0.30	0.70	0.03	1.4
b_2b_2	2032	0.06	0.03	0.01	0.05
	2108	0.27	0.48	0.17	0.80
$\widetilde{e}_R \widetilde{e}_R$	1856	1.6	0.89	0.22	1.6
$\widetilde{\nu}_{\mu R}\widetilde{\nu}_{\mu R}$	1856	1.9	0.89	0.22	1.6
	1365	2.2	1.05	0.12	2.0
$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	954	pprox 0	-	-	-
$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$	954	pprox 0	-	-	-
$\widetilde{\chi}_1^+ \widetilde{\chi}_1^-$	955	1.26	11	5.9	15
$\widetilde{\chi}_{3}^{0}\widetilde{\chi}_{3}^{0}$	1294	0.91	-	-	-
$\widetilde{\chi}_{4}^{0}\widetilde{\chi}_{4}^{0}$	2262	0.58	-	-	-
$\widetilde{\chi}_2^+\widetilde{\chi}_2^-$	2262	1.4	6.5	5.9	7.0
H^0A^0	3046	0.06	_	-	-
$\mathrm{H^{+}H^{-}}$	3046	0.15	0.61	0.62	0.60

- Pair production using the best fit values for the masses
- Neutral particles not accessible at (tree level) in γγ collisions
- No ISR or beam spectra included
- $J_z = 2$ preferred for sfermions ($J_z = 0$ would be preferred at 5 TeV for the same model)

e⁺e⁻ vs γγ at 10 TeV (2)

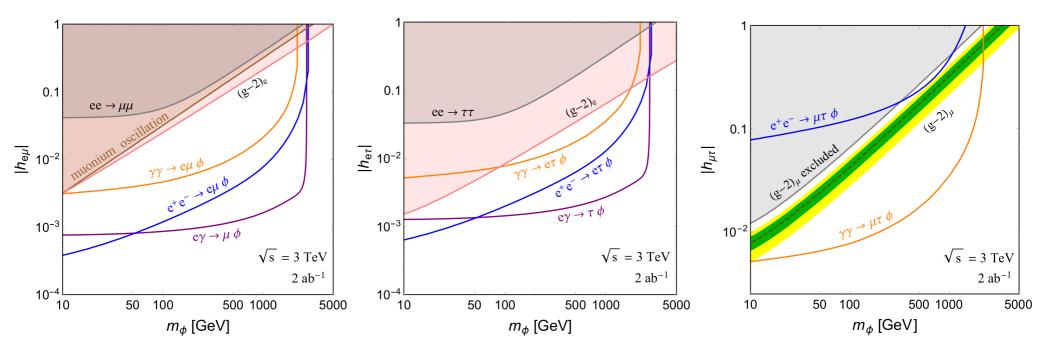
Particle pair	Mass [GeV]	$\sigma(e^+e^- \rightarrow XX)$ [fb]	$\sigma(\gamma\gamma \rightarrow XX)$ [fb]
		Circe2 + ISR, unpol.	Circe2, unpol.
$\widetilde{\widetilde{d}}_L \widetilde{\widetilde{d}}_L$	1009	0.61	0.07
$\widetilde{u}_{L}^{-}\widetilde{u}_{L}^{-}$	1006	0.89	1.2
	1009	0.61	0.07
$\widetilde{c}_{L}\widetilde{c}_{L}$	1006	0.89	1.2
$\widetilde{\mathbf{b}}_1 \widetilde{\mathbf{b}}_1$	1997	0.19	0.01
$\tilde{t}_1 \tilde{t}_1$	1866	0.28	0.22
$ \begin{array}{c} \widetilde{e}_L \widetilde{e}_L \\ \widetilde{\nu}_{eL} \widetilde{\nu}_{eL} \\ \widetilde{\nu}_{eL} \end{array} $	1869	0.95	0.37
$\widetilde{\nu}_{eL}\widetilde{\nu}_{eL}$	1867	4.6	-
$\mu_L \mu_L$	1869	0.25	0.37
$v_{\mu L} v_{\mu L}$	1867	0.11	-
$ \begin{aligned} \widetilde{\tau}_1 \widetilde{\tau}_1 \\ \widetilde{\nu}_\tau \widetilde{\nu}_\tau \end{aligned} $	1328	0.30	0.93
	1364	0.15	-
$\widetilde{d}_R\widetilde{d}_R$	988	0.13	0.08
$\widetilde{u}_R \widetilde{u}_R$	989	0.53	1.2
$\widetilde{s}_R \widetilde{s}_R$	988	0.13	0.08
$\tilde{c}_R \tilde{c}_R$	989	0.53	1.2
b_2b_2	2032	0.07	0.01
	2108	0.26	0.16
$\widetilde{e}_R\widetilde{e}_R$	1856	1.4	0.38
$\widetilde{\nu}_{\mu R}\widetilde{\nu}_{\mu R}$	1856	0.21	0.38
$\widetilde{\tau}_2 \widetilde{\tau}_2$	1365	0.31	0.86
$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	954	pprox 0	_
$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{2}^{0}$	954	pprox 0	-
$\widetilde{\chi}_1^+ \widetilde{\chi}_1^-$	955	2.7	1.4
$\widetilde{\chi}_{3}^{0}\widetilde{\chi}_{3}^{0}$	1294	1.1	-
$\widetilde{\chi}_{4}^{0}\widetilde{\chi}_{4}^{0}$	2262	0.53	-
$\widetilde{\chi}_2^+ \widetilde{\chi}_2^-$	2262	1.3	1.3
H^0A^0	3046	0.04	
$\mathrm{H}^{+}\mathrm{H}^{-}$	3046	0.10	0.08


• Work in progress, need to include luminosity spectra for different photon helicity configurations

 Using 3 TeV luminosity spectrum scaled to 10 TeV for e⁺e⁻

 \rightarrow A multi-TeV photon collider has discovery potential for squarks, sleptons and chargions with a few ab⁻¹

• A 10 TeV e⁺e⁻ collider would cover the entire SUSY particle spectrum in this scenario


What about e⁻y collisions?

no beam polarisation

One more example: LFV couplings

Scenarios with Lepton Flavour Violation (LFV) and a heavy scalar ϕ (connection to neutrino mass generation)

 m_{ϕ} : mass of heavy scalar $h_{\alpha\beta}$: LFV couplings

 \rightarrow Complementarity of eq- and qq-collisions in this scenario

CERN-2018-009-M

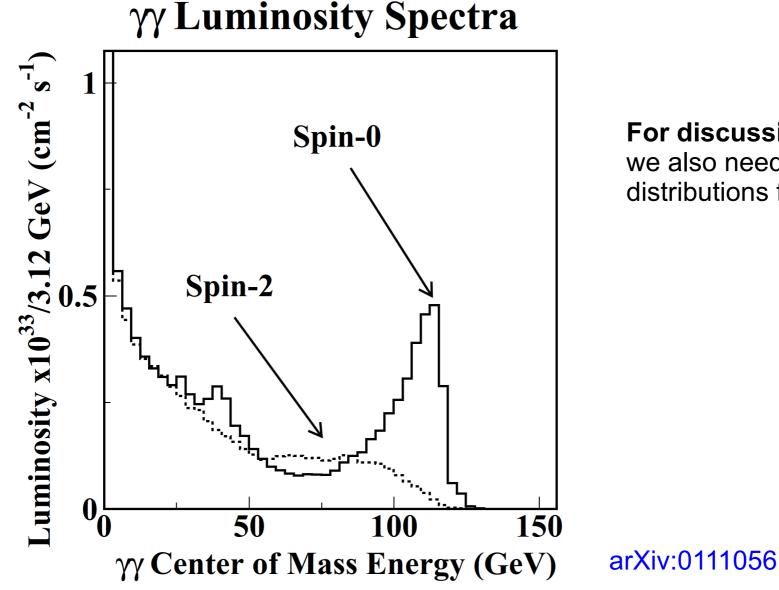
Summary and outlook

- Very first look at photon-photon collisions in the multi-TeV region
- Promising opportunities for precision measurements in multi-boson production (will be explored further)
- Direct discovery in pair production of charged particles, requirements on integrated luminosity same order of magnitude as for electron-positron collisions
- Some unique opportunities in electron-photon interactions
- Interesting possibility: 380 GeV CLIC collider for Higgs & top, then multi-TeV γγ collider

Thanks a lot for help and / or discussions:

Jean-Jacques Blaising, Wolfgang Kilian, Francesco Riva, Ulrike Schnoor, Daniel Schulte

Backup slides


vy collider as Higgs factory

- A $\gamma\gamma$ collider with $\sqrt{s}_{\gamma\gamma}$ around 125 GeV allows to study the process $\gamma\gamma \rightarrow H$
- The previous proposals CLICHE (arXiv:0111056) and SAPPHiRE (arXiv:1208.2827) would provide 20000 Higgs bosons / year \rightarrow comparable to first stage of CLIC at 350 / 380 GeV
- However, some decays seem difficult in photon collisions: $H \rightarrow c\bar{c}$, $\tau^+ \tau^-$, $q\bar{q}$
- A fully model-independent interpretation of the results would require some input from an e⁺e⁻ collider
- The optimal $\gamma\gamma$ collision energy for $\gamma\gamma \rightarrow H^* \rightarrow HH$ is a bit below 300 GeV (an ILC-based photon collider running for 5 years seems not competitive on with a high-energy e^+e^- collider for double Higgs production) arXiv:1205.5292

 $\rightarrow e^+e^-$ seems to be the best option for Higgs physics

H

Helicity dependence

For discussion:

we also need these distributions for 10 TeV

Reminder: Light-by-light scattering ($\gamma\gamma \rightarrow \gamma\gamma$)

ARTICLES PUBLISHED ONLINE: 14 AUGUST 2017 | DOI: 10.1038/NPHYS4208 nature physics

OPEN

Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC

ATLAS Collaboration[†]

Light-by-light scattering $(\gamma \gamma \rightarrow \gamma \gamma)$ is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead ions. Using $480 \,\mu b^{-1}$ of lead-lead collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, here we report evidence for light-by-light scattering. A total of 13 candidate events were observed with an expected background of 2.6 ± 0.7 events. After background subtraction and analysis corrections, the fiducial cross-section of the process Pb + Pb $(\gamma \gamma) \rightarrow$ Pb^(*) + Pb^(*) $\gamma \gamma$, for photon transverse energy $E_T > 3$ GeV, photon absolute pseudorapidity $|\eta| < 2.4$, diphoton invariant mass greater than 6 GeV, diphoton transverse momentum lower than 2 GeV and diphoton acoplanarity below 0.01, is measured to be 70 ± 24 (stat.) ±17 (syst.) nb, which is in agreement with the standard model predictions.

$\gamma\gamma \rightarrow \gamma\gamma$ at a 10 TeV photon collider

ee

γe

2.5

1.5

1 0.5 0

0

2

• A high energy photon collider would be ideal to study light-by-light scattering

• **Example:** Born-Infeld theory (nonlinear extension of QED) $c_1 = -1/(32M^4)$, $c_2 = 1/(8M^4)$

 $\frac{d\sigma}{d\Omega} = \frac{1}{16\pi^2\hat{s}} \left(\hat{s}^2 + \hat{t}^2 + \hat{s}\hat{t}\right)^2 \left(48c_1^2 + 11c_2^2 + 40c_1c_2\right)$

95% CL limit: M > 12.2 / 13.6 / 15.1 TeV for 150 / 750 / 4000 fb⁻¹ Ellis, Mavromatos, \rightarrow only small dependence on integrated luminosity Ph.R., You

For comparison: M > 100 GeV at ATLAS

arXiv:1703.08450

• Other models under study

0.4

0.6

ħω/E₀

0.2

10 TeV

0.8