

CLICTD status and plans

CLIC Workshop 2019

CERN, 21-25 January 2019

I. Kremastiotis, R. Ballabriga, N. Egidos

- Requirements
- The process
- The CLICTD detector channel
- Chip interface
- Summary and status

Requirements

- Requirements for a monolithic chip for the CLIC silicon tracker:
- Channel dimensions:
 - Single point resolution in one dimension $\,\leq 7\,\mu m$
 - Length of short strip/long pixel: $1 10 \ mm$
- Energy measurement (Time over Threshold):
 - 5-bits resolution
 - For time walk correction and improving spatial resolution
- Time measurement (Time of Arrival):
 - 10 ns bin, 8-bits
 - No multi-hit capability
- Material budget 1 1.5% X₀
 - $\sim 200 \ \mu\text{m}$ for silicon detector and readout
- Power consumption below $150 \ mW/cm^2$
 - Power pulsing, duty cycle \sim 500 ns / 20 ms

The process

• Design of monolithic active pixel sensor in TowerJazz 180 nm CMOS imaging process

• Segmenting the n-layer is expected to increase the lateral field in the pixel corner and result in improved timing resolution

Gap in n-layer:

W. Snoeys, M. Munker

The CLICTD detector channel

- The detector channel consists of an elongated pixel of $30 \times 300 \ \mu m^2$
- The analog part is segmented in 8 front-ends (diode + CSA + discriminator + 3-bit tuning DAC)
 - To ensure prompt charge collection in the diodes
- Digital part: $\sim 16 \times 300 \ \mu m^2$
- Clock frequency 100 MHz (measurement) / 40 MHz (readout)
- Readout with zero compression (at channel level) is available
 - Data output:
 - Hit flag (1 bit)
 - ToT (5 bits)
 - ToA (8 bits)
 - In-channel hit map (8 bits)

Mode	Description
Nominal	8 bits ToA + 5 bits ToT
Long counter	13 bits ToA
Photon counting	13 bits photon counting

Column / matrix integration

- Total sensitive area: $4.8 \times 3.84 \ mm^2$
- Each column consists of 128 channels and one End-of-Column
- Test pulse can be enabled only for selected columns
- Analog biasing signals are connected to the side of the matrix
- Power pulsing
 - Analog: Multiplexing between "ON" and "OFF" DAC values
 - Digital: Power pulsing signal delayed (<1 ns) between consecutive rows
 - Cells are placed to the left side of the matrix

Mux switching between 'ON' and 'OFF' bias added at each row

Clock distribution

- Two clocks are provided as inputs to the CLICTD chip
 - Measurement clock (100 MHz), Readout clock (40 MHz)
 - Clocks are multiplexed before arriving to the pixel matrix. Multiplexing is performed at the "End-of-Column" block, placed at the bottom side of each column
 - The slow control clock line (SCL) is treated as a different, lower frequency clock
- The **100 MHz** (measurement) clock is gated with the power pulsing signal
 - No clock distributed in matrix when in standby
- The 40 MHz (readout) clock is gated in the digital periphery
 - Enabled in the matrix only during readout / configuration
- Constraints are added between the DATA_OUT / ENABLE_OUT pins and CLK_OUT
 - Delay from clock to data output is constrained to < 3 ns

40 MHz clock

Chip interface

- I²C interface is used for the slow control of the CLICTD chip
- Configuration data are shifted in the matrix using the slow control interface (I²C)
 - A total of 41 configuration bits is shifted in per channel (in two stages, since the area does not allow for 41 flip-flops)
 - Total configuration time: ~1.9 s
- Serial readout at 40 MHz
 - Compressed readout at channel level:
 - 22 bits are read out for channels that have been hit
 - 1 bit read out for channels that are not hit
 - Readout time \sim 70 μ s (for CLICTD matrix size, using compression, 1% occupancy)
 - ENABLE_OUT signal is used to synchronise with DAQ (along with clock output)
 - CLK_OUT, DATA_OUT and ENABLE_OUT are differential outputs

- Differential signals:
 - 2 LVDS receivers (CLK_100, CLK_40)
 - 3 LVDS drivers (CLK_OUT, DATA_OUT, ENABLE_OUT)
 - Blocks re-used from ALPIDE libraries

Analog periphery

- Biasing DACs (binary weighted current source)
 - Option to overwrite one of the internally generated biasing voltages by an external voltage (ANALOG_IN pin)
 - Option to monitor one of the internally generated voltages (ANALOG_OUT pin)
- Bandgap reference
 - Block re-used from ALPIDE libraries
 - Option to overwrite the internal reference by an externally provided voltage (REF pin)
- Analog periphery dimensions: $\sim 3800 \times 400 \ \mu m^2$

I/O interface

Pin	Dir.	Domain	Description	
SDA	I/O	Digital	I ² C data line	
SCL	Ι	Digital	I ² C clock line	
PWREN	Ι	Digital	Power pulsing enable signal (set to '1' for standby)	
TPULSE	Ι	Digital	External test pulse signal	
READOUT	Ι	Digital	External pin to issue readout	
SHUTTER	Ι	Digital	Shutter signal	
RSTN	Ι	Digital	Reset signal (active low)	
ENABLE_OUT	0	Digital	Enable data output (differential line)	
CLK_100	Ι	Digital	100 MHz acquisition clock (differential line)	
CLK_40	Ι	Digital	40 MHz readout clock (differential line)	
DATA_OUT	0	Digital	Serial data output (differential line)	
CLK_OUT	0	Digital	Clock output (differential line)	
ANALOG_IN	Ι	Analog	Analog input	
REF I		Analog	Reference voltage	🖌 🔪 Analog I/C
ANALOG_OUT	0	Analog	Analog output	
VDDA	Ι	Analog	Analog power supply (6 pins)	
VSSA	Ι	Analog	Analog ground (6 pins)	
VDDD	Ι	Digital	Digital power supply (7 pins)	Power
VSSD	Ι	Digital	Digital ground (7 pins)	
PWELL	Ι	PWELL	P-well bias (2 pins)	Supplies
SUB	Ι	SUB	Substrate bias (2 pins)	J

- Wire-bond pad dimensions: $88 \times 150 \ \mu m^2$
- Pitch: 100 μm

Power consumption

- Pixel matrix :
 - Analog \rightarrow Power pulsing
 - Analog front-end is set to "Power Off" mode between subsequent bunch trains
 - Sufficient time should be provided for the circuit to power on before acquisition
 - Analog power consumption for the pixel matrix in continuous power mode: $\sim 100 \ mW/cm^2$
 - A factor of ~ 50 lower power consumption can be achieved after power pulsing
 - Average analog power consumption over the CLIC cycle: $\sim 2 \frac{mW}{cm^2}$
 - Digital \rightarrow Clock gating
 - During acquisition, the clock is enabled only for the channels that detect a hit
 - During readout, the clock is enabled only for the column that is being shifted out
 - Power consumption values extracted using simulation data
 - Average digital power consumption over the CLIC cycle: $\sim 2.63 \frac{mW}{cm^2}$
- Periphery:
 - Differential drivers and receivers are the dominant consuming blocks in the CLICTD chip (22 mW/driver and 2.5 mW/receiver, at maximum bias)
 - Additional power consumed by the analog and digital periphery blocks

Update on CLICTD verification

- Implemented using (Universal Verification Methodology):
 - Large number of operation scenarios are simulated (randomized stimuli)
 - Result collection is automated
 - Digital-oriented simulation environment and stimuli
 - Simulations with RTL netlist successfully completed; work in progress using post-layout extracted netlist

Simulated scenarios include the chip main operation modes:

- Reset
- Configuration (matrix, acquisition mode, readout mode...)
- Applying test pulses or forcing hits at the matrix
- Readout (configuration values or acquired hits)
- Writing and reading slow control registers
- Power pulse control

Status of the verification:

- Some functional bugs have been spotted and corrected
- Some timing issues have been spotted and fixed
- Work ongoing on the latest version of the post-layout extracted netlist

Summary and status

- The CLICTD chip:
 - Simultaneous 8-bit ToA and 5-bit ToT measurement
 - Cell dimensions: $300 \times 30 \ \mu m^2$
 - Sensitive area: $4.8 \times 3.84 \text{ }mm^2$ (16 columns, 128 rows)
 - Chip dimensions: $5 \times 5 mm^2$ (including seal ring)
- Design status:
 - All blocks designed
 - Final verification (functional and physical) in progress
 - Final steps for chip integration
 - Metal and active area filling to be performed
 - Plan to submit two versions with different n-layer geometry
 - Version 1: continuous n-layer
 - Version 2: gap in n-layer
 - Segmenting the n-layer is expected to result in faster charge collection
 - Submission plan: mid-February 2019
 First GDS version to be prepared by the end of January