

Irradiation studies in the VESPER test stand

CLIC Week 2019

M. Kastriotou, M. Tali, R. Ferraro, R. Garcia Alia, on behalf of the CERN R2E project W. Farabolini, D. Gamba, R. Corsini et al.

Background

VESPER Facility

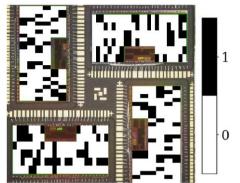
Conclusion

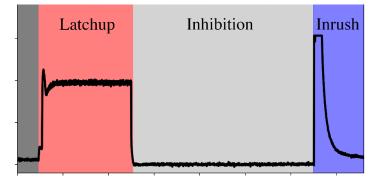
Radiation Effects Electrons an SEEs

VESPER VESPER road map Experimental campaigns External campaigns Outlook Summary

Brief introduction to Radiation Effects on Electronics

□ Single Event Effects (SEEs) caused by single particles

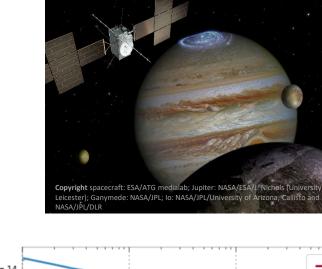

- $_{\circ}$ Single Event Upset (SEU) \rightarrow single bit-flip
- $_{\circ}~$ Single Event Latchup (SEL) \rightarrow abnormal current in device
- Cumulative effects generating progressive degradation of component
 - Total Ionizing Dose (TID)
 - Displacement Damage

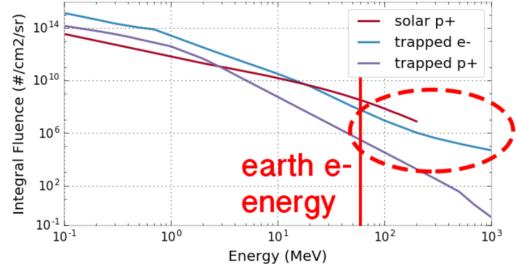

SEEs and electrons

Traditionally, electrons have been neglected due to their relatively low LET (e.g. compared to ions), very low nuclear reaction probability, and/or low relative flux and energy in operational scenarios

Recent studies (2013+) show that **single electrons are capable of inducing SEEs**, resulting in researching the: (i) underlying physical mechanisms (ii) implications on qualification approaches

Electrons and SEEs

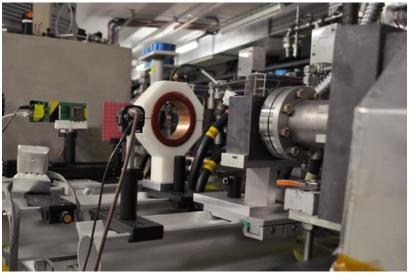

- Delta ray electrons from high energy hadrons (cosmic rays / particle accelerators)
- Damage/degradation of detectors and electronics in HEP experiments
- High energy electron linacs

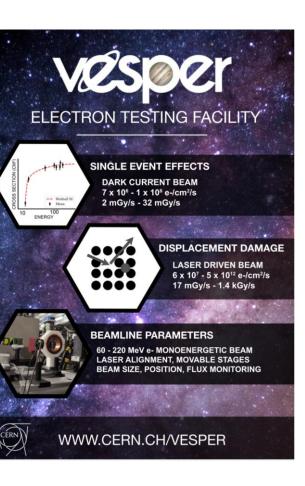

Missions near Jupiter

ESA mission to Jupiter - JUICE (JUpiter ICy moon Explorer): Study the Jovian system (Jupiter, Europa, Ganymede and Callisto)

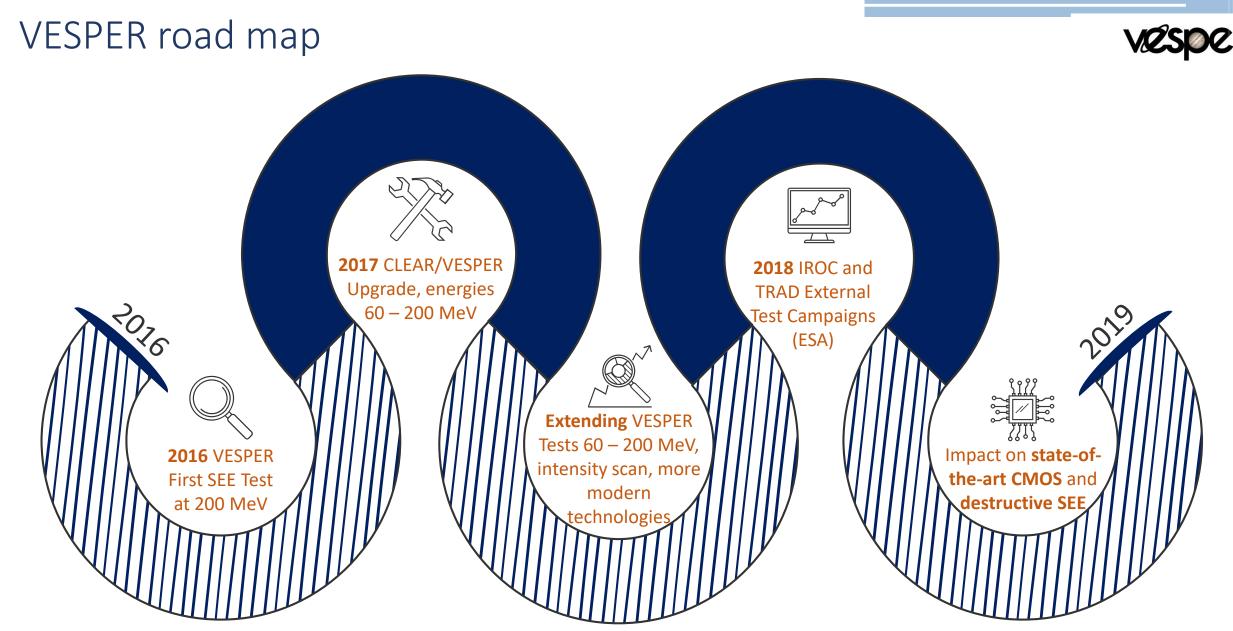
VESPER Motivation - Energetic particle environment

- Magnetically trapped charged particles, solar protons and galactic cosmic rays
- Main contribution to dose: high-energy trapped electrons
- Secondary radiation generated by the interaction of the environment with the spacecraft





VESPER


vesper

- □ Part of the CLEAR electron accelerator
- Test bench for general purpose radiation testing, e.g. electronics
- Can be operated with laser driven electron beam or dark current, 60-200 MeV
- Beam monitoring using the FBCT, BTV YAG screens and radiochromic films
- □ 2 movable stages
- R2E contribution in VERPER through (Maris Tali and R2E):
 - The calibration of the facility using RadFET, the ESA SEU monitor and gold activation measurements
 - FLUKA simulations
 - Website (<u>http://vesper.web.cern.ch/</u>)RADECS2018 poster

events \rightarrow SELs are a "no-go" for parts tested for space

Test setup


- Several experimental runs with 3 different memories
- A set of memories sensitive to the latch-up effect were irradiated (Alliance, BSI, ISSI)

Results

- Proof of first experimental electron-induced SEL
- Parts are protected through current limitation
- A combined effect of TID and SEE was also observed experimentally
- Results presented at NSREC 2018 and published in IEEE TNS

A. Destructive Event Experiment

B. Displacement damage tests

VESPEľ

Objectives:

- Investigate TID-DD synergistic effect on bipolar IC
- Investigate DD effects on optocouplers
- Beam cross-calibration

Test setup:

- Multi-purpose test board (compatible with all the DUTs)
- DUTs: 2xNPN BJTs, Current source, voltage reference, 2xoptocouplers
- TIDMon for calibration (RadFET, PINDIODE)

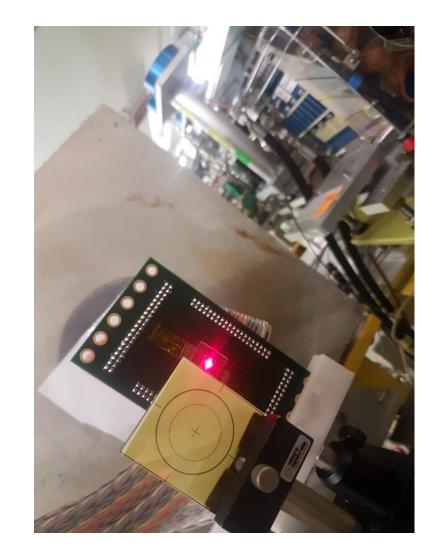
Test conditions:

- Energy: 200 MeV
- Dose rate: 20-50 Gy/h
- Test performed from ~20:00 to 8:00

B. Displacement damage tests - outcomes

Preliminary Results:

- Dose rate effect on the current source and BJTs (to be further analyzed)
- Good response of the optocouplers, to be compared with neutron test campaigns
- No synergistic effects observed on the voltage regulator
- RADFET response compliant with the expected dose
- **Test issues:**
 - Laser-driven beam used (Dark current beam not available due to some issues)
 - Difficulty to keep a low flux and to monitor the beam profile
 - Difficulty to setup the correct beam parameters at the beginning


C. External Campaigns

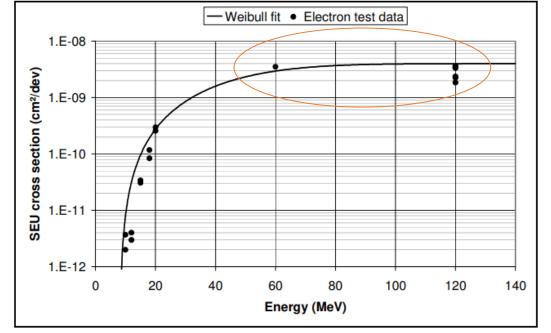
- Two external companies (TRAD and IROC) conducted tests at end of 2017/start of 2018
- Part of the ESA assessment of electron contribution to the upset rate during the JUICE mission
- □ The high-energy electron tests were conducted at VESPER
- □ Highly integrated FPGAs and SRAM (28 nm) were tested
- The electron sensitivity of the tested devices can lead to a non-negligible electron contribution in the JUICE environment
- The two high energy cross section points (VESPER) are more than one order of magnitude above the medical facility data:

The VESPER energies are absolutely essential to find the saturation value

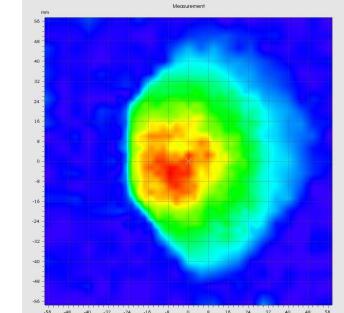
Test reports have been produced, incl. RADECS2018 contribution

C. External Campaigns

- Two external companies (TRAD and IROC) conducted tests at end of 2017/start of 2018
- Part of the ESA assessment of electron contribution to the upset rate during the JUICE mission
- □ The high-energy electron tests were conducted at VESPER
- □ Highly integrated FPGAs and SRAM (28 nm) were tested
- The electron sensitivity of the tested devices can lead to a non-negligible electron contribution in the JUICE environment
- The two high energy cross section points (VESPER) are more than one order of magnitude above the medical facility data:


The VESPER energies are absolutely essential to find the saturation value

Test reports have been produced, incl. RADECS2018 contribution


11

Outlook

- For 2019 VESPER dosimetry, the collaboration with the facility and beam experts (W. Farabolini) is always necessary
- Possibility of dosimetry enhancement by using a medical 2D-array liquid ionisation chamber (1000SRS by PTW) – tested also at the CERN North Area with Pb beam
- Several potential R2E related tests are planned for testing new devices and more effects (also in collaboration with the RADSAGA network):
 - > Timepix detector
 - > Optical fibre radiation induced luminescence sensors
 - DRAM memories
 - Displacement damage tests on diodes
 - > 1000 SRS ionisation chamber
 - SEU tests on 65nm SRAM memories
- Interest from NASA in relation to the US Clipper mission

RADSAGA

Summary

- Experimental demonstration of the potentially destructive electron-induced events
- Successful external campaigns. Both ESA and the external companies were satisfied with the obtained results
- ✓ Many proposals for R2E tests at the CLEAR beam suggest a very active and fruitful 2019
- On behalf of the CERN/R2E team and the external users:
 Many thanks to the CLEAR team for their big support and their availability !

Thank you!

