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A THz source based on Coherent Transition &)
Radiation (CTR)
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See Ref. Curcio, A., et al. "A beam-based (sub-)THz source at the CERN Linear Electron Accelerator for Research" Physical Review Accelerators and Beams (2019).
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Comparison among different radiation mechanisms and source
performances of the CLEAR THz source

Comparison among Coherent Transition Radiation (CTR), e bllowine costn beam porametore (oer singie boseh
Coherent Diffraction Radiation (CDR) and o el o e
. . L. Radiation mechanism: CTR
Coherent Cherenkov-Diffraction Radiation (CChDR) Peak Pouer [kW] ~ 4043
Peak Awverage Power [mW] ~0.13+0.0
Power (kW] Energy per pui._ﬁe [nd] ~ 60+ 5
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215 MeV, 1.5 ps, 40 pC’. The experimental points have been Radiation mechanism: CChDR
represented by the sketch of the radiators corresponding to Peak Power [MW] ~0.124 0.0
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Longitudinal diagnostics, high-intensity 2)

field production and
studies on electromagnetic shadowing

CChD-based BPM
And
Bunch Length Monitor

Experiments on high-intensity
THz generation and
Electromagnetic Shadowing
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A Coherent Cherenkov-Diffraction-based o)

s Beam Position Monitor
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Some simulations (courtesy of K. Lekomtsev)
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Important note: This B.P.M., based on coherent radiation, is sensitive only to bunches
shorter than a certain threshold bunch length!
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Using two diodes (84 GHz and 113.5 GHz)
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Measurement made by exploiting
a one-parameter formula for a gaussian
bunch (far-field assumed).
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Longitudinal diagnostics with CChDR

Using three diodes (60 GHz, 84 GHz and 113.5 GHz)
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Measurement made by exploiting a two-
parameter system for a skew-gaussian bunch
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Important note: distance between the prism and the diodes around 10 cm
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Electromagnetic Shadowing

Measurements performed at 0.17 THz with a band-pass-filtered Schottky diode
Studying the interaction between an arbitrary source of forward THz radiation with a CTR source

An overview of all radiators tested

Scanning the distance between the sources and the CTR mirror -~
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The bunch propagates

in this case through the
hollow dielectric cylinder,
then it generates
transition radiation on the
metallic mirror

(courtesy of K. Lekomtsev)
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Important note: Shadowing observed also with the ChD cylinder (radiation output not expected)

A new interpretation of the shadowing: the bunch field is restricted by the boundary conditions and it needs time/space
to recover and induce radiation at the plane of the second source?



clear,

Measuring transmitted
and reflected THz light

Solving a system of two equations
yielding both the electron plasma
density and temperature as solutions

’}_R — /dWS(w)R(”&TErw)
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i—T = deS(W)T(ne; Te, w)
0

See Ref. Curcio, A. & Petrarca, M. “Diagnosing plasmas with wideband THz pulses" Optics Letters (2019).
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Exotic applications of THz radiation:
diagnostics of plasma density and temperature
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Conclusions and perspectives

We have set up and fully characterized a new THz source @CLEAR based on different mechanisms
(CTR, CDR, CChDR)

We have succesfully tested a Cherenkov-Diffraction teflon prism
both for transverse and longitudinal diagnostics;

We have explored different targets for high-intensity THz generation
but also for Electromagnetic Shadowing experiments,
finding a new interpretation of this phenomenon;

We are going to possibly test new radiators and enhance the beam performances
for high-intensity THz generation, in order to go towards the application of THz
for acceleration at CLEAR;

New applications other than beam diagnostics and acceleration like plasma diagnostics...
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