

Plasma activities at SPARC_LAB

R. Pompili (LNF-INFN) riccardo.pompili@lnf.infn.it

On behalf of the SPARC_LAB collaboration

Laboratori Nazionali di Frascati

The SPARC_LAB test-facility

Ferrario, M., et al. "SPARC_LAB present and future." NIMB 309 (2013): 183-188.

2/22 R. Pompili - Plasma activities at SPARC_LAB - CLIC Workshop 2019 24/01/19

High-brightness photo-injector

Serafini L., Ferrario M. "Velocity bunching in photo-injectors." AIP conference proceedings. 2001. **Anderson, S. G., et al.** "Velocity bunching of high-brightness electron beams." PRSTAB 8.1 (2005): 014401.

Plasma-based activities

Plasma lens

- Characterization of the focused beam (\rightarrow emittance) with active/passive lenses
- Tests with different geometries (short/long capillaries with small/large hole radii)

Plasma dechirper

- Tests with different beam configuration (energy-chirp, charge, duration)
- Complete characterization $($ \rightarrow emittance, energy spread)
- Tests with different geometries (short/long capillaries) and plasma densities

Plasma acceleration

- Deceleration studies (single bunch, different charge and duration)
- Acceleration and characterization of a small-charge witness bunch
- Studies with multi-drivers configuration

Plasma bending

Characterization of curved capillary geometries with large discharge currents (few kA) Proof-of-principle experiment of particle bending

Experimental setup

Plasma interaction chamber

6/22 R. Pompili - Plasma activities at SPARC_LAB - CLIC Workshop 2019 24/01/19

Compact and tunable PMQ triplets

Three PMQs installed, z-position tunable

Two PMQs movable, 1 fixed

- \bullet Minimum distance \sim 2-3 mm
- Maximum distance \sim 8-10 mm

Piezo-actuators allow to z-move each PMQ

- 20 nm resolution
- Feed force $> 40 N$
- Holding force > 100 N
- \bullet UHV (10-9 mbar)
- Non-magnetic

Pompili, R., et al. "Compact and tunable focusing device for plasma wakefield acceleration." Review of Scientific Instruments 89.3 (2018): 033302.

Injection, acceleration and extraction

The goal of our activities is to apply plasma technology to new accelerator facilities

- Provide plasma acceleration (up to several GV/m) while preserving the high-brightness of the accelerated beam (emittance, energy spread)
- Demonstrate the possibility to use active plasma lenses as focusing device

It requires a deep study of the plasma properties and capillary geometry

- Characterization of the plasma density profiles (longitudinal and transverse)
- Shaping of the capillary, use of different materials (sapphire, 3D-printed samples, ...)

Hydrogen emission spectrum lines in the Balmer series

Active-plasma lens

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Discharge-current flowing in a gas-filled capillary

• The gas acts like a conductor between the two electrodes

How it works

- By the Ampere law, an azimuthal magnetic field is induced
	- It radially grows across the current and decreases outside of it
- The capillary radially confine the gas and, thus, the current

Benefits

- Cylindrical symmetry in focusing (like solenoids)
- Favorable focusing strength $K \sim 1/\gamma$ (like quadrupoles)
- Large focusing gradients ($\sim kT/m$) \rightarrow short focal length
- Tunability by adjusting the current amplitude

$$
B_{\phi}(r) = \frac{\mu_0}{r} \int\limits_0^r J(r')r' dr'
$$

Similar to "passive" lenses

This is the real added value!

Panofsky, Wolfgang Kurt Hermann, and W. R. Baker. "A Focusing Device for the External 350-Mev Proton Beam of the 184-Inch Cyclotron at Berkeley." Review of Scientific Instruments 21.5 (1950): 445-447.

Summary of results @ SPARC_LAB

Pompili, R., et al. Applied Physics Letters 110.10 (2017): 104101. Marocchino, A., et al. Applied Physics Letters 111.18 (2017): 184101.

Demonstration of emittance preservation

Pompili, R., et al. Physical Review Letters 121.17 (2018): 174801.

We have proved for the first time that the nonlinear focusing of an active plasma lens strongly affect the beam emittance

Main findings

Nonlinearities when using low discharge-currents in a partially ionized gas (**100 A** initially)

Transverse plasma wakefields (passive lens effect) add more nonlinearities

Demonstration of emittance preservation

Active lens: larger currents (**250 A**, now up to **600 A**) produce more linear fields and larger H_2 ionization

Passive lens: low bunch densities are favorable

Next steps: test different capillary geometries

Plasma dechirper

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Tuning of the bunch longitudinal phase-space (LPS) through the wakefields excited in a plasma

Large wake (up to GV/m) allow to impress a time-energy correlation $($ \rightarrow chirp) on the bunch with small structures (cm-size)

Several knobs can be used

Plasma density (large densities → large wakes) Bunch density (large densities \rightarrow large wakes) Length of the plasma channel (cumulative effect)

Applications

Energy-chirp removal (aka "dechirper") Bunch compressors (R_{56} in dogleg/chicane beamlines)

Experimental setup

Experimental results

Energy spread vs plasma density

100

17/22 R. Pompili - Plasma activities at SPARC_LAB - CLIC Workshop 2019 24/01/19

 $\mathbf{0}$

 97

97.5

98

98.5

Energy (MeV)

99

99.5

Bending with plasma

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

Bending magnets are widely employed in accelerator facilities

- Deflect particle beams to a different location, e.g. in experimental beamlines
- Manipulation of the beam longitudinal phase space (LPS), e.g. compression in chicane/dogleg beamlines
- Generation of synchrotron light

Different solutions can be implemented, depending on the beam energy, deflection angle and space constraints

- Electromagnetic dipoles (tunable, simple, cheap; small magnetic fields)
- Permanent magnets (simple, cheap, compact; no tunability, maximum field strength \sim 1.5 T)
- Super-conducting technology (large fields up to $~10$ T, tunable; expensive, large size, needs cryogenic systems)
- Advanced concepts, e.g. channeling in crystals

Active Bending Plasma (ABP) is an extension of the APL mechanism

- The Lorentz force due to the current-induced magnetic field pushes the particles toward the capillary axis
- The same applies in a curved capillary: particles stay close to the bent path
- Plasma can sustain large currents (> 70 kA proved). As an example, **25 kA** current pulses (τ~200-300 ns) produce **~6 T** magnetic fields

What such a technology can offer

- Compactness. Large deflection angles, no need of cryogenic systems
- Tunability. The bending is tuned by adjusting the discharge-current
- Cheap solution (capillary+discharge pulser)
- *Preservation of the beam Longitudinal Phase-Space (LPS) → not possible with devices providing constant magnetic fields*

AIP Advances

JAN 25 2018

Editor's picks

Guiding of charged particle beams in curved capillary-discharge waveguides Pompili et al.

Pompili, R., et al. "Guiding of charged particle beams in curved capillary-discharge waveguides." AIP Advances 8.1 (2018): 015326.

The guiding efficiency of the ABP is tested with numerical simulations

The device (simulated by **CST Studio**)

- **10 cm** curvature radius
- 1 mm capillary hole diameter
- Filled by ${\sf H_2}$ gas (density 10 $^{\rm 19}$ cm $^{\rm -3)}$
- 25 kA current discharge

The beam (simulated by **GPT**)

- \cdot **100 MeV** (0,1% energy spread)
- \bullet $\sigma_{x,y}$ = 100 μm, σ_{z} = 300 μm
- 1 μm normalized emittance

Field lines across the capillary and evolution of beam envelopes (x,y,z)

NB: synchrotron emission not included in simulations!

Virtual experiment

Bending field and its effect on particle trajectories

Longitudinal phase space preservation

Conservation of bunch length is a direct consequence of ABP working mechanism

- Its magnetic field is radially increasing
- Large energy particles \rightarrow large offset with respect to the capillary axis \rightarrow stronger deflection (larger field)

Bunch elongation is negligible even with large energy spreads

- The ABP does not require any manipulation on the beam LPS as in the case of standard bending magnets!
	- No dispersion-matching optics (quads, sextupoles)!
- Simple and affordable solution in view of compact machines.

Laboratori Nazionali di Frascati

