

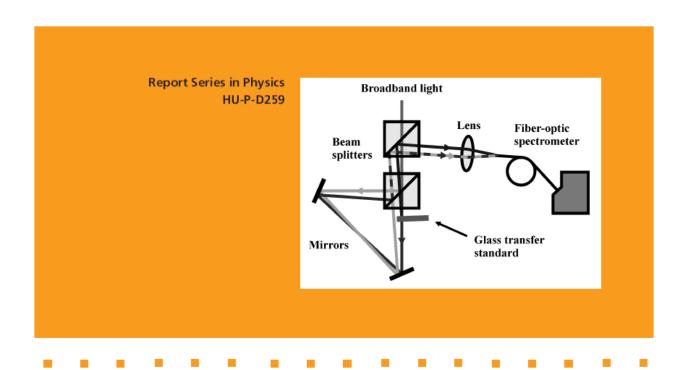

Submicron accurate CLIC accelerating structure internal alignment quantification

<u>Risto Montonen</u>^{1,2}, Ivan Kassamakov^{1,2}, Edward Hæggström², and Kenneth Österberg^{1,2}

Helsinki Institute of Physics, University of Helsinki
 Department of Physics, University of Helsinki

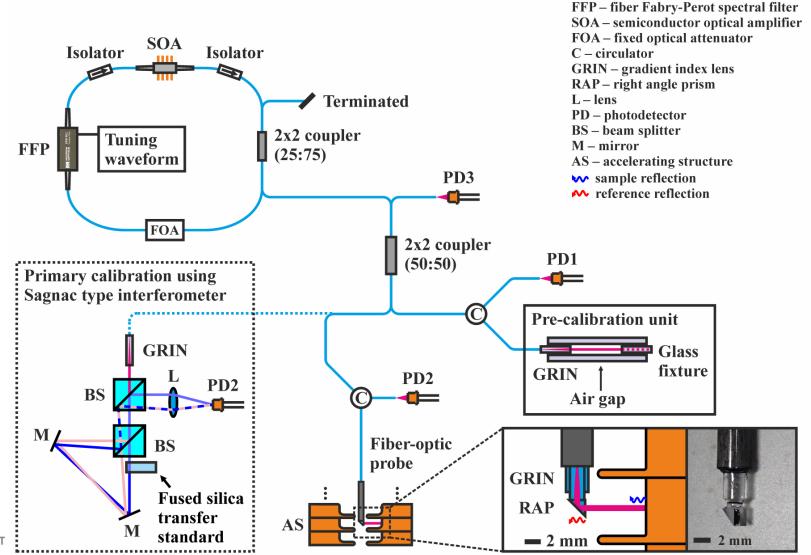

Submicron accuracy across 10 mm range required

Wang et al., in The 1st International Particle Accelerator Conference, Kyoto, Japan, JACoW, THPEA064 (2010).


	Type 1	Type 2	Type 3	Type 4
Shape error	Disc stack alignment	AS-cavity diameter	Iris shape Iris shape error	Disc tilt
Tolerance	5 μm	1 μm	2 μm	140 µrad

✓ Fiber-optic Fourier domain short coherence interferometer (FDSCI)

Dissertation defended



LENGTH CALIBRATION OF FOURIER DOMAIN INTERFEROMETER FOR PARTICLE ACCELERATOR QUALITY ASSURANCE

Risto Montonen

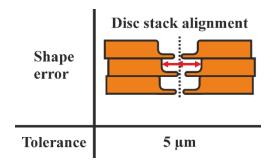
Fiber-optic Fourier domain short coherence interferometer

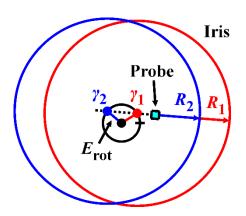
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITE UNIVERSITY OF HELSINKI

Research aims

1. Portable fiber-optic FDSCI

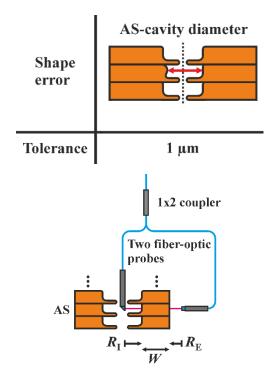
 Swept laser source, fiber-optics, detectors, and fiber-optic probe


2. AS scanning system


AS rotation, fiber-optic probe pullback

Option 1	Option 2
Custom made scanning with rotation and translation stages	Portable fiber-optic FDSCI integrated into a form measuring machine

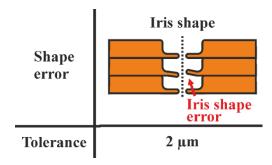
Measurement strategy: Disc stack alignment


$$E_{\text{rot}} = \frac{R_1 - R_2}{2\sin\left(\frac{\gamma_2 - \gamma_1}{2}\right)}$$

- Eccentricity of each iris plotted in cylindrical coordinate system (Z, γ_1 , E_{rot})
- Alignment analyzed as maximum deviation from the centerline
- Dominant sources of uncertainty: FDSCI repeatability, sample orientation, and radial error motion of the rotation table

U ≈ ±1 µm

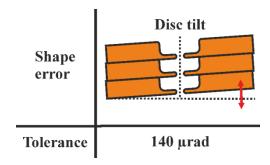
Measurement strategy: AS-cavity diameter



- Reduced distortion by eccentricity zeroing and probe repositioning
- Fiber-Sagnac configuration to measure AS-wall thickness
- Internal shape referenced to outer surface with CMM inspection
- Dominant sources of uncertainty: FDSCI repeatability and calibration, sample orientation, and CMM probing error

 $U > \pm 1 \mu m$

Measurement strategy: Iris shape



- Heavily rounded form of irises not detectable with FDSCI length data
- Iris shapes analyzed by determining zenith positions in confocal manner
- Dominant sources of uncertainty: back reflection intensity variations, pullback repeatability, and axial error motion of the rotation table

 $U < \pm 1 \ \mu m$

Measurement strategy: Disc tilt

- Systematic tilt of discs (bookshelfing) analyzed as orientation of irises with respect to the centerline of the disc stack
 - Planar fit
- Dominant source of uncertainty: axial error motion of the rotation table

 $U \approx \pm 0.1 \, \mu \text{m}$

Conclusions

- Length calibration of Fourier domain interferometers and systematic and random uncertainty propagation in disc stack alignment measurements shown in the dissertation
- Portable fiber-optic Fourier domain short coherence interferometer under assembly
- Accelerating structure internal alignment and shape measurement addresses strict requirements for the rotation table

