

4th Annual X-band Structure Collaboration Meeting

Manufacturing RF structures at CERN

G. Riddone, 04/05/2010

(contribution from Production Team: S. Atieh, G. Arnau, Ph. De Souza, A. Grudiev, D. Gudkov, T. Katopodis, S. Lebet, M. Filippova, M. Malabaila, A. Olyunin, A. Samoshkin, J. Shi, M. Saifoulina, A. Solodko, I. Syratchev, M. Taborelli, T. Uusimaeki)

Content

- Scope: RF acceleration structures, PETS and RF components
- Production flow: accelerating structures and PETS
- Production program and status
- Production capability and master schedule
- Dedicated test program
- Conclusions

Scope

G. Riddone, 2010.05.04

Variable high power splitter

Hybrid

PETS (11.4 GHz, test at SLAC)

Accelerating structures: baseline manufacturing flow

Production program

	Accelerating structure T18 KS 11 GHz		[#]	Status	Comments		
			2	1 baking 1 bonding	Baseline design		
	T24	11 GHz	1	Disks at CERN			
	T24 45 mm	12 GHz	2	1 bonding	Previous		
	T24 45 mm	11 GHz	2	Disks at CERN			
	TD24	12 GHz	1	Installed TBTS	Previous CERN design		
	T24 KS	12 GHz	2+1	Machining			
	T24 KS	11 GHz	2+1	Machining			
	TD24 KS	11 GHz	2	Machining	Baseline design		
	TD24 KS	12 GHz	2	Tendering			
	TD24 WFM	12 GHz	2+1	Tendering	Baseline + WFM		
	TD24 R05 KS	12 GHz	2	Eng. design	Baseline, lower DT		
	TD24 SiC R05 12 GHz		2	RF design available	With damping loads		
TD26 KS 12 GHz		2	RF design on-going	With compact coupler			

G. Riddone, 2010.05.04

Production program

Accelerating stru	ıcture	[#]	Status	Comments
CD10	11 GHz	2	Disks at CERN	vg1.16
C10	11 GHz	2	Machining	vg1.35
CD10 choke Proto + full str.	=	=	Machining	New damping (Tsinghua)
Symmetrical disk prototypes		=	Machining	Improved performance (HIP)
Quadrant – double length prototype	=	=	Tendering	Machining
Halves – prototypes	=	=	Tendering	Machining/ Bonding test
TD18 quad with slots	11 GHz	=	Engineering design	

Production program

Accelerating structure			Status	Comm	ients
AS for proto modules	12 GHz	14	Eng. design		
AS for CLIC	12 GHz	=	Eng. design		
AS PSI/Trieste	12 GHz	4	Machining	X-FEL	
AS DDS UnM	12 GHz	1	Eng. design		

PETS		[#]	Status	Comments
PETS for SLAC	11 GHz	1	Final assembly	Damping mat.
PETS for test module 12 GHz		4	Eng. design	Collaboration with CIEMAT
PETS for stand-alone TS	12 GHz	2	Eng. design	
PETS for CLIC	12 GHz	=	Eng. design	
On-off mech. CLEX	12 GHz	2	Eng. design	
On-off mech. CLIC	12 GHz	=	Eng. design	

G. Riddone, 2010.05.04

T18 (KS) N2

Preparation for final brazing

Flange welding under N2 injection

Preparation for baking

11

TD24 12 GHZ (TBTS)

New CMM (Coordinate Measuring Machine) under procurement at CERN

TD24 12 GHz (TBTS)

G. Riddone, 2010.05.04

T18 KS N1 - 11.4 GHz

Bodycote

440.0 1410.0 1380.0 32 23669 361.53139 1350.0 1320.0 45 57673 1290.0 65.81243 1260.0 75.96811 1230.0 52 28:198 1200.0 35 51 348 1170.0 24 12217 1140.0 16.38610 1110.0 11.13055 1000.0 7.56063 1050.0 5.13569 1020.0 990.0 3 48851 2 36964 960.0 930.0 1.60962 1.09336 900.0 2400 2320 0.74269 870.0 2240 840.0 0.50448 810.0 0.34268 0.23277 780.0 750.0 0.15811 0.10740 720.0 0.07295 690.0 0.04956 660.0 630.0 0.03366 0.02287 600.0 0.01553 570.0 0.01055 540.0 0.00717 510.0 0.00487 480.0 0.00331 450.0 0.00225 420.0 -1120 пал 0.00153 390.0 0.00104 360.0 960 880 0.00070 330.0 800 0.00048 300.0 720 0.00032 270.0 640 0.00022 240.0 sen 0 00015 210.0 180.0 aan . 0.00010 400 -0.00007 150.0 320. 0.00005 120.0 240. 0.00003 90.0 160 -0.00002 60.0 80. 0.00001 30.0 ο. 0.0 -111 11

Status:

- machining of the couplers after brazing
- bonding of the disks on 04.05.2010

T24 C N1 – 12 GHz

Status:

- machining of couplers under way
- bonding of the structure on 5.05.2010

Diffusion bonding of couplers: 1030-1040°C, H2

G. Riddone, 2010.05.04

15

Fabrication of PETS at 11.4 GHz with damping material

Bar length ~ 300 mm Shape tolerance within specification: ± 7.5 μm

Status: assembly finished

Procedure as close as possible to the baseline, but some difference due to design and infrastructures

Production capability

PRODUCTION CYCLE (ac. structures)					PRODUCTION CYCLE (PETS @ 11.4 GHz)			
Manufacturing	Assembly (bonding)	Tuning	Baking		Manufacturing	Assembly (EB welding)	<mark>RF meas.</mark> Baking	
10 wks	4 wks	2 wks	3 wks		10 wks	6 wks	1 wk	
Total: 19 wks (about 5 months)					Total: 18 wks (about 4.5 mon	ths)	1 wk	

Firms qualified:

- Disks damped: VDL (NL), Mechacrome (FR), Savimex (FR)
- PETS: VDL (NL), Unitek (IT), KERN (DE), Comeb (IT)

(effort continues to qualify new firms: DMP (SP), IPK (DE), KERN (DE))

For each structure, at least two units are manufactured (almost in parallel) At present, potential capability up to 15 structures per year

Master schedule

ERN

Towards CLIC structures

• CDR – TD24 R05 SiC.KS

- Accelerating structure with all features: damping material, wakefield monitor and technical systems; under eng. design (first structure at the end of 2010). Assembly test with a prototype structure are scheduled in the coming weeks.
- PETS with on-off system: under design.
 On-off system to be tested in Q4, 2010
 Actuator prototype received on
 3.5.2010
- Cost estimate in needed by 2010: launched dedicated studies with three companies/institutes

RF components

Component	Suppliers	TBTS	SATS	KEK	SLAC	TBL	PSI- XFEL	ST- XFEL
High-power loads [38]	CINEL (IT) Heeze (NL) VDL (NL) Cobham (UK)	7	3	2	2	18	3	3
Directional couplers [34]	Gycom (RU) Cobham (UK) Nikoha (JP) IHEP (CN)	5	6		1	14	5	3
Splitters [11]	VDL (NL)	4	2		1		2	2
Hybrids [4]	CINEL (IT) IHEP (CN)	2	2					
VPA [2]	Gycom (RU)	2						
				Sev	eral RF o	compor	ients are i	needed
Phase shifter [1]	Gycom (RU)	1		for	differen	t test st	ands	

Dedicated program: heat treatment comparison

Motivation: understand why bonding under H_2 gives the best results (baseline) Test with few samples conducted already in 2009 (before adopting baseline). Some results are shown hereafter

Heat treatment - vacuum	Heat treatment H2, 30 mbar
Mag = 10.00 K X EHT = 20.00 kV ¹ Jum Detector = SE1 KEK; Sample 2; Vacuum Brazing 820 °C; Nominal CERN cycle A. Toerklep EN/MME/MM Date :29 May 2009 File Name = Surface-periphery-14.tif	Mag = 10.00 K X, KEK; Sample 4; H2 Brazing 820 °C; Bodycote cycle A. Toerklep EN/MME/MM EHT = 20.00 kV ¹ µm KEK; Sample 4; H2 Brazing 820 °C; Bodycote cycle Date :4 Jun 2009 Detector = SE1 Surface; periphery File Name = Surface-periphery-23.tif

Decision to pursue the investigation with several samples to increase statistics

Dedicated program: heat treatment comparison

24

Samples under cleaning, results expected by summer 2010

Conclusions

- NLC/JLC fabrication technology validated for CLIC accelerating structures to 100 MV/m, adopted by CERN (since 09.2009)
 - First structure built by CERN T18 (high power tests are important): modifications implemented for 2nd structure after visit at SLAC
- Important milestone is the TD24 with SiC: first unit ready by end of this year
- Production of RF components is expanding
- Production capability up to 15 structures per year → higher than available testing slots
- A lot of work: involvement of other laboratories to exchange experience and expertise is essential
- Industrialization, mass production and cost study launched for few structure configurations