Applications of NLC X-Band Technology Including a Compact XFEL

Chris Adolphsen SLAC

High Power (Multi-MW) X-Band Applications

- Energy Linearizer
 - Single Structure: in use at LCLS, planned for BNL, PSI, Fermi/Trieste and SPARX/Fascati
- Deflecting Cavity for Bunch Length Measurements
- CERN Linear Collider Structure Development
- 100's of MeV to Many GeV Linacs
 - LLNL 250 MeV linac for gamma-ray production
 - SLAC 600 MeV energy 'dither' linacs for LCLS II
 - LANL 6-20 GeV linac for an XFEL source to probe proton-matter interactions
 - SPARX 1-2 GeV X-Band linac for their FEL
 - SLAC study of a 6 GeV Linac for a Compact XFEL (CXFEL) source

CERN/CLIC X-band Test-Stand (Under Construction)

CERN - CEA – PSI – SLAC

High Voltage Modulator

Compact X-Ray (1.5 Å) FEL

Parameter	Symbol	LCLS	CXFEL	Unit
Bunch Charge	Q	250	250	рС
Electron Energy	E	14	6	GeV
Emittance	$\gamma \mathcal{E}_{x,y}$	$\gamma \epsilon_{x,y} = 0.4-0.6 = 0.$		μm
Peak Current	I_{pk}	3.0	3.0	kA
Energy Spread	σ_{E}/E	0.01	0.02	%
Undulator Period	λ_{u}	3	1.5	cm
Und. Parameter	K	3.5	1.9	
Mean Und. Beta	$\langle \beta \rangle$	30	8	m
Sat. Length	L _{sat}	60	30	m
Sat. Power	P _{sat}	30	10	GW
FWHM Pulse Length	ΔT	80	80	fs
Photons/Pulse	N_{γ}	2	0.7	10 ¹²

X-band Linac Driven Compact X-ray FEL

0.4 um emitt. at 6 GeV)

Operation Parameters

	Units	CXFEL	NLC
Final Beam Energy	GeV	6	250
Bunch Charge	nC	0.25	1.2
RF Pulse Width*	ns	150	400
Linac Pulse Rate	Hz	120	120
Beam Bunch Length	μm	7	110

* Allows ~ 50-70 ns multibunch operation

Layout of Linac RF Unit

Nine T53 Structures (a/ λ = 13%) or Six H60 Structures (a/ λ = 18%)

NLC RF		
Component		
Costs		
(2232 RF Units)		

Cost (k\$) per Item				
LLRF	26.1			
Modulator	83.7			
Klystron	56.6			
TWT	13.3			
SLED-II	242.3			
Structures	21.5			

For the 6 GeV CXFEL, assume the cost per item will be 4 times higher. For 70 MV/m operation:

	Units	T53	H60
Total RF units		18	24
X-Band Linac Length	m	122	108
Total Accelerator Length	m	192	178
X-Band Linac Cost	M\$	56	62

Gradient Optimization

Assuming 1) Tunnel cost 25 k\$/m, AC power + cooling power 2.5 \$/Watt 2) Modulator efficiency 70%, Klystron efficiency 55%.

Structure Breakdown Rates with 150 ns Pulses

- 1) H60VG3R scaled at 0.2/hr for 65 MV/m,400 ns, 60Hz
- 2) T53VG3R scaled at 1/hr for 70 MV/m, 480 ns, 60 Hz
- 3) Assuming BDR ~ G^{26} , ~ PW^6

Single Bunch Wake Tolerances

 In both Linac-2 and Linac-3, short-range transverse wakefields in H60 are not a major issue in that:

- An injection jitter equal to the beam size yields a 1% emittance growth in Linac-2 and .003% growth in Linac-3

- Random misalignments of 1 mm rms, assuming 50 structures in each linac, yields an emittance growth of 1% in Linac-2, 0.1% in Linac-3.
- With the T53 structure, the jitter and misalignment tolerances are about three times tighter for the same emittance growth.
- The wake effect is weak mainly because the bunches are very short.

X-Band Revival

- The 15 year, ~ 100 M\$ development of X-band technology for a linear collider produced a suite of robust, high power components.
- With the low bunch charge being considered for future XFELs, X-band technology affords a low cost, compact means of generating multi-GeV, low emittance bunches.
 - Gradients of 70-100 MV/m possible vs ~ 25 MV/m at S-Band and
 ~ 40 MV/m at C-Band
- The number of XFELs is likely to continue to grow (e.g., normal conducting linacs being considered in Korea and China).
- To expand X-band use, need to have components industrialized and a small demonstration accelerator built, such as the 150 MeV C-band linac at Spring-8 in Japan where they have done light source studies.