

4th Annual X-band Structure Collaboration Meeting

Silvia Verdú-Andrés (TERA, IFIC)

U. Amaldi, M. Garlasché (TERA), R. Bonomi (TERA, Politecnico di Torino), A. Degiovanni, A. Garonna (TERA, EPFL), R. Wegner (TERA, CERN), C. Mellace (A.D.A.M.)

03.05.2010

Hadron therapy: the basics

[Dose Distribution Curve]

200 MeV - 1 nA protons

4800 MeV – 0.1 nA carbon ions (radioresistant tumours)

Treating moving organs requires...

TERA's proposal:cyclotron + high-freq. linac = cyclinac

Higher accelerating gradients

→ Smaller complex!

Cyclinac:

 $E_0 \sim 40 \text{ MV/m} \Rightarrow E_{\text{Max}} \sim 200 \text{ MV/m}$

BDR ~ 10^{-6} bpp/m in 30 m

S

☆ Operation limit for S-band cavities → Break Down Rate BDR per length

- Limit given by:
- surface field E_s (Kilp.) or
- modified Poynting vector S_c + scaling law (X, K-band)

✤ Operation limit for S-band cavities → Break Down Rate BDR per length

- Limit given by:
- surface field E_s (Kilp.) or
- modified Poynting vector S_c + scaling law (X, K-band)

* Scaling laws at S-band

[E_s, S_c, pulse length, temperature, repetition frequency]

8

✤ Operation limit for S-band cavities → Break Down Rate BDR per length

- Limit given by:
- surface field E_s (Kilp.) or
- modified Poynting vector S_c + scaling law (X, K-band)
- * Scaling laws at S-band
 - [E_s, S_c, pulse length, temperature, reputition frequency]

Applying found limit to <u>future designs</u>

- ensure <u>reliable operation</u>
- optimize RF structures (efficiency, length, cost)

✤ Operation limit for S-band cavities → Break Down Rate BDR per length

- Limit given by:
- surface field E_s (Kilp.) or
- modified Poynting vector S_c + scaling law (X, K-band)

* Scaling laws at S-band

[E_s, S_c, pulse length, temperature, repetition frequency]

Applying found limit to <u>future designs</u>

- ensure <u>reliable operation</u>
- optimize RF structures (efficiency, length, cost)

single-cell test cavity

ANSYS

5.000 (cm)

2.500

3.750

1.250

$$\beta = 0.38 (E_{kin} = 70 \text{ MeV})$$

$$f_0 = 3000 \text{ MHz}$$

$$Q_0 = 9000$$

$$E_{max}/E_0 = 6.5$$

$$Max = 5$$

$$Cooling$$

$$P_{ave} = 350 \text{ W}$$

$$Mass Flow = 2.5 \text{ Lmin}$$

$$L/AT = -1.1 \text{ MHz}/20K$$

Production

- OFE copper
- 0.02 mm tolerance
- 0.4 µm roughness

Accelerating cell @ 3 GHz (two unsymmetrical half cells)

RF coupling system (waveguide, short circuit)

Cooling system (two plates, in-out pipes)

Connection to data acquisition (through CF flanges)

- Machining at Veca (Modena, Italy)
- Cleaning at CERN (Geneva, Switzerland)
- (vacuum) Brazing at Bodycote (Annecy, France)

Done in less than one month!

Low power test

First high-power test: objectives

- ✤Debugging test set-up and cavity
- First check of <u>cavity behaviour</u> under high-power
- Finding improvements for precision test to evaluate scaling laws [BDR(E_s, T_p, f_{rep})]

Only 1-2 weeks foreseen for test

High power test: set-up

@ CTF3

- ✓ Faraday Cup
- ✓ Peak Power Analyser
- ✓ Temperature sensors
- **x** no Data Acquisition System
- x no control system for stabilising frequency & amplitude
- x no RF Pickup

High power test: measurements

High power test: breakdown evaluation

High power test: first results

# Set	t _{FLAT} [μs]	P _{ABS} +/-ε[kW]	E _s [+/- 10 MV/m]	S _c [MW/mm2]	BDR/L [bpp/m]	Kilp.
1	1.5	830 +/- 40	380	2.4	5.E-02	8.1
1	1.5	850 +/- 40	390	2.4	5.E-02	8.2
1	1.5	900 +/- 50	400	2.6	6.E-02	8.4
2	2.0	120 +/- 10	150	0.4		3.1
2	2.0	120 +/- 10	150	0.4		3.1
2	2.0	300 +/- 20	230	0.9	4.E-03	4.9
2	2.0	300 +/- 20	230	0.9	4.E-03	4.9
1	2.0	400 +/- 20	270	1.2		5.6
2	2.0	520 +/- 30	300	1.5	3.E-02	6.4
2	2.0	520 +/- 30	300	1.5	4.E-02	6.4
2	2.0	600 +/- 30	330	1.7	4.E-02	7.0
1	2.0	790 +/- 40	370	2.3	5.E-02	7.9
2	2.0	820 +/- 40	380	2.4	8.E-02	8.0
1	2.0	860 +/- 40	390	2.5	1.E-01	8.3
1	2.5	590 +/- 30	320	1.7	6.E-02	6.9
2	2.5	590 +/- 30	320	1.7	4.E-02	6.9
1	2.5	720 +/- 40	360	2.1	7.E-02	7.6
1	2.5	800 +/- 40	380	2.3	8.E-02	8.0
2	2.5	800 +/- 40	380	2.3	9.E-02	8.0
Silvia Verdú-Andrés					TERA	1

High power test: comparison to other tests

Limit in copper to surface field by breakdown surface damage

Gradient limitations for high frequency accelerators, S. Döbert, SLAC, Menlo Park, CA 94025, USA (2004)

High power test: comparison to other tests

The modified Poynting vector as an RF constraint to high gradient performance

The square root of S_C has been scaled to $t_{pulse} = 200 \text{ ns}$ and BDR= 10^{-6} bbp/m

$$\sqrt{S_C^{equiv}} = \sqrt{S_C} \cdot \left(\frac{t_{pulse}}{t_{pulse}^{ref}}\right)^{\frac{1}{6}} \cdot \left(\frac{BDR^{ref}}{BDR}\right)^{\frac{1}{30}}$$

A New Local Field Quantity Describing the High Gradient Limit of Accelerating Structures, A. Grudiev, S. Calatroni, and W. Wuensch, Phys.Rev. Accel. Beams (2009) 102601

High power test: scaling laws

High power test: scaling laws

[90X Optical Microscope]

<u>Activity in the cavity</u>: ~ 14000 breakdowns

✤ Excellent Pre-Test, cavity works, even first results

SYSTEM	RESULTS / IMPROVEMENTS			
Vacuum system	very good			
Cavity - low power	very good			
	>96% Q ₀ , f ₀ ok, β=0.92 (Γ<-27dB)			
Cavity - high power	very good E _S > 350 MV/m, BDR < 2 • 10 ⁻¹ /m, T _{pulse} = 2 μ s			
Cooling	freq. shift too big => water flow too small			

Excellent Pre-Test, cavity works, even first results

SYSTEM	RESULTS / IMPROVEMENTS			
Vacuum system	very good			
Cavity - low power	very good			
	>96% Q ₀ , f ₀ ok, β=0.92 (Γ<-27dB)			
Cavity - high power	very good E _s > 350 MV/m, BDR < 2 • 10 ⁻¹ /m, T _{pulse} = 2 μs			
Cooling	freq. shift too big => water flow too small			

Improvements for high-precision test

- cooling / water flow control
- data acquisition (P_{forward}, P_{reflected}, φ_{forward}, φ_{reflected}, V_{faraday cup}, vacuum)
- control system for stabilising frequency & amplitude

Next steps: a lot to do!

High-precision high-power test of the 3GHz test cavity

Design, construction and high-power test of another single-cell cavity operating <u>at 5.7 GHz</u>

- to evaluate scaling laws
- Iearn more about breakdown phenomena

Design has already begun; to be tested before the end of 2010!

29

Thanks to...

- CLIC RF and Breakdown Group
- o CTF3 Group
- CERN General Services
- o VECA, Bodycote, ADAM
- o Vodafone

All the Cyclinac team for their support

And all of you for the attention!

The research leading to these results has received funding from the Seventh Framework Programme [FP7/2007-2013] under grant agreement n° 215840-2.

BACK-UP SLIDES

RF & mechanical design

- Requirements
 - Average power to cool (350 W)
 - Nº of parallel circuit (2)
 - Turbulent flow
 - Avoid erosion/corrosion
 - Reference temp. for coolant properties (37°C)
 - High heat transfer coefficient

- Choices
 - \circ dT _{in-out} = 1°C
 - \circ D_{eq} = 5.5 mm
 - Re = 13900
 - $v = 1.77 \, \mathrm{m/s}$
 - \circ h = 10020 W/m2/K

- Mass flow 2.5 l/min
- $\circ \Delta f_o / \Delta T_{RF} = -1.1 \text{ MHz} / 20 \text{ K}$

Halfcell design

Cooling design

OFE Copper / 316 L

Two pipes coated and brazed to cooling plate

Design evolution:

Standard WR-284 (OFE copper) with two LIL flanges for connection to RF source and short

(Cavity	/ Perfo	rmance	S E _S = 1 MW/n	50 MV/m nm²	S _C = 0.46	
[Measur	Measur		ExEp	₩₿₩	P = 128 k	W –
	t _{FLAT} [μs]	P _{ABS} [kW]	E _s [MV/m]	E ₀ [MV/m]	Sc [MW/mm2]	BDR/L [bpp/m]	Kilp
	1.5	670	340	53	2.39	5.2E-02	7.3
	1.5	680	345	53	2.44	5.1E-02	7.4
	1.5	720	355	55	2.57	6.0E-02	7.6
	2.0	100	130	20	0.35		2.8
	2.0	100	130	20	0.35		2.8
	2.0	240	210	22	0.87	3.9E-03	4.4
	2.0	240	210		0.07	4.1E-03	4.4
	2.0	320	240	Old values	1.15		5.1
	2.0	420	270		1.50	3.2E-02	5.8
	2.0	420	270	+2	1.50	3.8E-02	5.8
	2.0	480	290	45	1.73	4.0E-02	6.2
	2.0	630	335	51	2.28	5.0E-02	7.1
	2.0	660	340	52	2.37	7.8E-02	7.3
	2.0	690	350	54	2.48	1.4E-01	7.4
	2.5	470	290	44	1.70	6.3E-02	6.2
	2.5	480	290	44	1.71	4.1E-02	6.2
	2.5	570	320	49	2.06	7.2E-02	6.8
	2.5	640	335	52	2.30	8.2E-02	7.2
	2.5	640	335	52	2.31	8.6E-02	7.2

IEF

MAX

[90X Optical Microscope]

<u>Activity in the cavity</u>: ~ 14000 breakdowns

