

4th Annual X-band Structure Collaboration Meeting

Silvia Verdú-Andrés (TERA, IFIC)

U. Amaldi, M. Garlasché (TERA), R. Bonomi (TERA, Politecnico di Torino), A. Degiovanni, A. Garonna (TERA, EPFL), R. Wegner (TERA, CERN), C. Mellace (A.D.A.M.)

03.05.2010

Hadron therapy: *the basics*

Dose Distribution Curve]

200 MeV - 1 nA *protons*

4800 MeV – 0.1 nA *carbon ions* (radioresistant tumours)

Silvia Verdú-Andrés

Treating moving organs requires...

Lateral scanning with magnets: 2 ms/step

3D conformal treatment

TERA's proposal: *cyclotron + high-freq. linac = cyclinac*

Silvia Verdú-Andrés

Higher accelerating gradients

 \rightarrow *Smaller* complex!

Cyclinac:

 $E_0 \sim 40$ MV/m $\rightarrow E_{\text{Max}} \sim 200$ MV/m

BDR \sim 10⁻⁶ bpp/m in 30 m

5

↑ Operation limit for S-band cavities → Break Down Rate BDR per length

- Limit given by:
- surface field E_s (Kilp.) *or*
- modified Poynting vector S_c + scaling law (X, K-band)

7

[★] Operation limit for S-band cavities → Break Down Rate BDR per length

- Limit given by:
- surface field E_s (Kilp.) *or*
- modified Poynting vector S_c + scaling law (X, K-band)

Scaling laws at S-band

[E_s, S_c, pulse length, temperature, repetition frequency]

8

[★] Operation limit for S-band cavities → Break Down Rate BDR per length

- Limit given by:
- surface field E_s (Kilp.) *or*
- modified Poynting vector S_c + scaling law $(X, K$ -band)
- **Scaling laws at S-band**
	- [E_s, S_c, pulse length, temperature, repetition frequency]

Applying found limit to future designs

- **Exercise reliable operation**
- **optimize RF structures (efficiency, length, cost)**

 <u>◆ Operation limit</u> for S-band cavities → Break Down Rate BDR per length

- Limit given by:
- surface field E_s (Kilp.) *or*
- modified Poynting vector S_c + scaling law (X, K-band)

Scaling laws at S-band

[E_s, S_c, pulse length, temperature, repetition frequency]

Applying found limit to future designs

- **Exercise reliable operation**
- **optimize RF structures (efficiency, length, cost)**

single-cell test cavity

Silvia Verdú-Andrés

 5.000 (cm)

2.500

3.750

 1.250

$$
\beta = 0.38 \text{ (E}_{kin} = 70 \text{ MeV})
$$
\n
$$
f_0 = 3000 \text{ MHz}
$$
\n
$$
Q_0 = 9000
$$
\n
$$
E_{max}/E_0 = 6.5
$$
\n**3 max. H**
\n**4 max. H**
\n

Silvia Verdú-Andrés

Production

- **OFE copper**
- **0.02 mm tolerance**
- \bullet 0.4 µm roughness

Accelerating cell @ 3 GHz (two unsymmetrical half cells)

RF coupling system (waveguide, short circuit)

Cooling system (two plates, in-out pipes)

Connection to data acquisition (through CF flanges)

- ❖ Machining at Veca (Modena, Italy)
- Cleaning at CERN (Geneva, Switzerland)
- (vacuum) Brazing at Bodycote (Annecy, France)

Done in less than one month!

Low power test

First high-power test: **objectives**

- **E**bugging test set-up and cavity
- \triangle **First check of cavity behaviour under high-power**
- **❖ Finding improvements for precision test** to evaluate scaling laws [BDR(E_s, T_p, f_{rep})]

Only 1-2 weeks foreseen for test

High power test: *set-up*

@ CTF3

- **✓ Faraday Cup**
- Peak Power Analyser
- \checkmark Temperature sensors
- **x** no Data Acquisition System
- **x** no control system for stabilising frequency & amplitude
- **x** no RF Pickup

High power test: *measurements*

High power test: *breakdown evaluation*

High power test: *first results*

Silvia Verdu-Andrés 1988 et par la proposition de la proposition de la proposition de la proposition de la pro

High power test: *comparison to other tests*

Limit in copper to surface field by breakdown surface damage

Gradient limitations for high frequency accelerators, S. Döbert, SLAC, Menlo Park, CA 94025, USA (2004)

> 20 Silvia Verdú-Andrés 2000 et al. 2000 e

High power test: *comparison to other tests*

The modified Poynting vector as an RF constraint to high gradient performance

The square root of S_c has been scaled to $t_{\text{pulse}} = 200$ **ns** and BDR=10⁻⁶ **bbp/m**

$$
\sqrt{S_C^{equiv}} = \sqrt{S_C} \cdot \left(\frac{t_{pulse}}{t_{pulse}^{ref}}\right)^{\frac{1}{6}} \cdot \left(\frac{BDR^{ref}}{BDR}\right)^{\frac{1}{30}}
$$

A New Local Field Quantity Describing the High Gradient Limit of Accelerating Structures, A. Grudiev, S. Calatroni, and W. Wuensch, Phys.Rev. Accel. Beams (2009) 102601 Andrés 21 an III (1940) Andrés 21

21

High power test: *scaling laws*

High power test: *scaling laws*

[90X Optical Microscope]

Activity in the cavity: ~ 14000 breakdowns

❖ Excellent Pre-Test, cavity works, even first results

Excellent Pre-Test, cavity works, even first results

Manuele 19 manuele for high-precision test

- cooling / water flow control
- data acquisition (P_{forward}, P_{reflected}, φ_{forward}, φ_{reflected}, V_{faraday cup}, vacuum)
- control system for stabilising frequency & amplitude

Next steps: *a lot to do!*

*** High-precision high-power test of the 3GHz test cavity**

❖ Design, construction and high-power test of another single-cell cavity operating at 5.7 GHz

- **to evaluate scaling laws**
- **Example areasedown phenomenally been in the light of the light vehicle in the light vehicle in**

Design has already begun; to be tested before the end of 2010!

Thanks to…

- o CLIC RF and Breakdown Group
- o CTF3 Group
- o CERN General Services
- o VECA, Bodycote, ADAM
- o Vodafone

All the Cyclinac team for their support

And all of you for the attention!

The research leading to these results has received
funding from the Seventh Framework Programme funding from the Seventh Framework Programme [FP7/2007-2013] under grant agreement n° 215840-2.

BACK-UP SLIDES

RF & mechanical design

- Requirements
	- Average power to cool (350 W)
	- Nº of parallel circuit (2)
	- Turbulent flow
	- Avoid erosion/corrosion
	- Reference temp. for coolant properties (37ºC)
	- High heat transfer coefficient
- **Choices**
	- $d\overline{T}_{\text{in-out}} = 1$ ^oC
	- $D_{eq} = 5.5$ mm
	- $Re = 13900$
	- $v = 1.77$ m/s
	- $h = 10020 \text{ W/m2/K}$

 \circ Mass flow 2.5 l/min \circ $\Delta f_{o} / \Delta T_{RF} = -1.1$ MHz / 20 K

Halfcell design

Silvia Verdú-Andrés

33

Cooling design

OFE Copper / 316 L

Two pipes coated and brazed to cooling plate

Standard WR-284 (OFE copper) with two LIL flanges for connection to RF source and short

MAX

[90X Optical Microscope]

Activity in the cavity: ~ 14000 breakdowns

