

4th X-band structure collaboration meeting

Contents

- 1. Fabrication procedure on NLC/GLC and Single cell structures
- 2. Materials
- 3. Surface roughness and vacuum characteristics
- 4. Comparison of high gradient test results
- 5. Did we get gradient limit for copper material?
- 6. Improvement technologies for upgrading breakdown performance
- 7. New ideas on Quadrant Structure for 150MV/m
- 8. Vacuum sealing techniques without brazing
- 9. Electric-Field Enhancements by Small Gaps and Bumps (T. Abe)
- 10. R/D steps
- 11. Plan for future

Fabrication procedure on NLC/GLC and Single cell structures

NLC/GLC	Single cell structures
Rough cutting	Rough cutting
D.T	D.T
Chemical etching	Chemical etching
Diffusion bonding	Diffusion bonding
Brazing	Brazing
Baking at 650degC.	Megasonic water rinsing/light etching
Installation	Baking at 400degC.
In-situ baking 4th X-ba	nd structure collaboration in simple clean bench meeting

Materials

NLC/GLC	Single cell structure
OFHC ~4N	OFHC ~4N
	OFHC ~6N
	OFHC ~7N
	CuZr
	Molly
	CuAg

Surface roughness and vacuum characteristics

- Vacuum
- $10^{-6} \sim 10^{-8} Pa$

• Surface roughness

~ 1~3 µm Ra (depend on etching conditions)

High Power Tests of Single Cell Standing Wave Structures Tested

•Low shunt impedance, a/lambda = 0.215, 1C-SW-A5.65-T4.6-Cu, 5 tested •Low shunt impedance, TiN coated, 1C-SW-A5.65-T4.6-Cu-TiN, 1 tested •Three high gradient ceres low shunt impedance, 3C-SW-A5.65-T4.6-Cu, 2 tested •High shunt impedance, elliptical iris, *a/lambda* = 0.143, *1C-SW-A3.75-T2.6-Cu*, 1 tested •High shunt impedance, round $\frac{1}{100}$ a/lambda = 0.143, 1C-SW-A3.75-T1.66-Cu, 1 tested •Low shunt impedance, choke with 2nm gap, 1C-SW-A5.65-T4.6-Choke-Cu, 2 tested •Low shunt impedance, made of CuZr, *CEW-A5.65-T4.6-CuZr*, 1 tested •Low shunt impedance, made of CuCr, 1C-SW 5.65-T4.6-CuCr, 1 tested •Highest shunt impedance copper structure 1C-SN A2.75-T2.0-Cu, 1 tested •Photonic-Band Gap, low shunt impedance, 1C-SV-65-T4.6-PBG-Cu, 1 tested •Low shunt impedance, made of hard copper 1C-SW-A5 55 T4.6-Clamped, 1 tested •Low shunt impedance, made of molybdenum 1C-SW-A3.6574.6-Mo, 1 tested •Low shunt impedance, hard copper electroformed *1C-SW-A5.6-Electroformed-Cu*, 1 tested •High shunt impedance, choke with 4mm gap, 1C-SW-A3.75-T2.6-4mp-Ch-Cu, 2 tested •High shunt impedance, elliptical iris, *a/lambda* = 0.143, *1C-SW-A3.75-72.6-6NCu*, 1 tested •High shunt impedance, elliptical iris, *a/lambda* = 0.143, *1C-SW-A3.75-T2.6 CN_HIP-Cu*, 1 tested •High shunt impedance, elliptical iris, a/lambda = 0.143, 1C-SW-A3.75-T2.6-7NCu_1 tested •Low shunt impedance, made of CuAg, 1C-SW-A5.65-T4.6-CuAg-SLAC-#1, 1 tested •High shunt impedance hard CuAg structure 1C-SW-A3.75-T2.6-LowTempBrazed-CuAg, Lested •High shunt impedance soft CuAg, 1C-SW-A3.75-T2.6-CuAg, 1 tested •High shunt impedance hard CuZr, 1C-SW-A3.75-T2.6-Clamped-CuZr, 1 tested •High shunt impedance dual feed side coupled, 1C-SW-A3.75-T2.6-2WR90-Cu, 1 tested

V.A. Dolgashev, 16 December 2008

Gradient and pulse heating for 5 different single cell structures, *shaped* pulse (*flat* part: A5.65-T4.6-KEK-#1- 150 ns, A5.65-T4.6-Frascati-#2- 150 ns, A3.75-T2.6-Cu-SLAC-#1: 150 ns, A3.75-T1.66-Cu-KEK-#1 200 ns, A2.75-T2.0-Cu-SLAC-#1 200 ns)

Max(Integral_0^T(Ploss/Sqrt(T-t) dt)) [a.u.]

V.A. Dolgashev, 16 December 2008

8

Breakdown rate *vs.* gradient and pulse heating for 4 A3.75-T2.6 structures, shaped pulse, 150 ns flat part. Two sets of data for 7N structure are shown, 1st taken 2/09/10-2/18/10, 2nd taken 3/11/2010

V.A. Dolgashev, 16 April 2010

9

From valery Equail I attached file with most recent 150-200 ns data for 4 different types of structures. Again, looks like peak یt ہے۔ معناد میں م معناد معن magnetic field has higher effect on breakdown rate then the peak electric field. Unfortunately, we still

Improvement technologies for upgrading breakdown performance

- Do we need extremely small roughness?
- Do we need extremely high vacuum?
- Do we need extremely dust free?
- Do we need deferent material in stead of Copper?

Properties of field emission dark current from Molybdenum and Titanium electrode

Nagoya University Fumio Furuta*, <u>M. Yamamoto</u>, T. Nakanishi, S. Okumi, T. Goto M. Miyamoto, M. Kuwahara, N. Yamamoto, K. Naniwa, K. Yasui

KEK H. Matsumoto, M. Yoshioka Spring-8 K. Togawa

High Field Gradient Test Stand

Features

- Maximum field area : ~ 7 mm²
 @Cathode surface
- Gap separation □ 0□20 mm
- Base Pressure □ □ 7×10⁻¹⁰ Pa
- HV power supply □~ DC -100 kV

Preparation of Electrodes

Material	Surface	Rinsing	Ra
<mark>pure-Ti</mark> (JIS grade-2)	Buff polishing	HPR* (80 kg/cm²⊡5 min)	< 0.1µm
Mo (poly-crystal 5N)	Diamond paste Buff polishing	HPR (80 kg/cm²⊡5 min)	< 0.1µm

*HPR: high pressure ultra-pure water rinsing

7-9 Oct 2004 PESP2004 Mainz

Dark Current Dependence (Electrodes Material)

7-9 Oct 2004 PESP2004 Mainz

Conditioning curves of pure metals

My conclusion for CLIC structure needs

- Extremely small roughness
- Extremely high vacuum
- Extremely dust free
- Out gas free
- Deferent material in stead of Copper

Have to conform using Single Cell structure

UV Cleaning

Reflectivity of 172nm wavelength on Nb and Cu

Fig. 1. Log-log plot of n (solid line) and k (dashed line) versus wavelength in micrometers for copper. for niobium. Fig. 1. Log-log plot of n (----) versus wavelength in micrometers for copper. meeting

UV Cleaning Test Setup

Results of UV cleaning on the cavity surface

Examples: Cu only / Cu/Mo clad

24

New ideas on Quadrant

- No Vacuum tank
- No Brazing
- Easy machining
- Easy Assembly
- Easy Alignment
- Cost Reduction
- Utilizing EBW/Laser welding for vacuum seal
- Mo, SUS, Ti for high electric field iris

Cartoon for a new concept Quadrant

4th X-band structure collaboration meeting

Electric-Field Enhancements by Small Gaps and Bumps (T. Abe)

• Have to keep dimensions error Less than five micron

• Smooth edge and keeping mirror surface Electro-polishing

R/D Steps

- Single cell SW structure (Cu/Mo/Ti/SUS)
- Aggressive high power conditioning test
- Compare to disk structure (A3.75, T2.6)
- Determines whether baking is necessary
- C10 Quadrant structure
- Characterization test for high gradient performance
- TD24 Quadrant structure
- Characterization for CLIC structure

R/D for Quadrant Fabrication

- Tool ware test on OFC, CuAg, CuZr, Mo, Ti, SUS - They will tested by Kansai University
- Diamond wire cutting test for rough shaping
 - Company
- Electro polishing for Mo, Ti, SUS
 - KEK
- Wire discharge cutting test for rough shaping - KEK
- Cu/Mo, Cu/SUS Diffusion tests
 - KEK, Company
- EBW/Laser welding for vacuum seal
 - KEK, Company 4th X-band structure collaboration

meeting

The First Step

The Second Step

4th X-band structure collaboration meeting

Final Step

Cavity Inside

Iris ring Configuration

Plan for Future

@ Continue to explorer gradient limit of copper material with SLAC

@ In-Situ observation of pulse heating damages and breakdown phenomena with SLAC

@ Performance test for new quadrant structure