Tuning of Traveling-Wave Structures

Jiaru Shi, CERN May 4, 2010

Acknowledgement

Contributor

- Alexej Grudiev
- Walter Wuensch
- Andrey Olyunin
- Serge Lebet
- Juwen Wang
- •

Outline

- General explanation of the method
- Tuning experiences at CERN
 - ► TD24
 - ► T18

Introduction

- Phase velocity = beam velocity
- Phase advance per cell ~ frequency
- Matching cell
 - Output matching cell \rightarrow standing-wave
- History
 - Plunger
 - Each individual cell
 - Matching the coupler
 - Iris contamination (Be careful for high gradient!!)
- Where are we?
 - Estimation of fabrication error $2 \sim 3 \mu m$?
 - ▶ 1µm of radius → 1MHz → 1 phase error / cell or 0.02 (-34dB) reflection from matching (for X-band, $v_g=0.01c$, 120),

Introduction

▶ The Paper of T. Khabiboulline^[1,2]

- Output States States
- Calculate forward and backward wave of each cell
- \bigcirc ? Correction while monitoring S₁₁
- ?? Output cell (the paper assume it has been tuned)
- ?? The reflection ~ the frequency detuning

[1] DESY M-95-02, 1995 [2] PAC95, P1666

Reflection due to Frequency Detuning

$$\begin{split} \Gamma &= \frac{(\beta - 1)(\beta + 1) - Q_0^2 (\Delta F)^2}{(\beta + 1)^2 + Q_0^2 (\Delta F)^2} - j \frac{2\beta Q_0 \Delta F}{(\beta + 1)^2 + Q_0^2 (\Delta F)^2} \\ \Delta F &= \frac{f}{f_0} - \frac{f_0}{f} \qquad \Delta F = -2\Delta f_0 / f_0 \quad \text{if} \quad \Delta f_0 << f_0 \end{split}$$

D

Reflection due to Frequency Detuning

 Adding both the wall-loss and the power flow to the next cell: the equivalent Q0

$$Q_0' = \frac{\omega U}{P_{\rm w} + P_{\rm f}} \approx \frac{\omega U}{P_{\rm f}} = \frac{\omega W D}{W v_g} = \frac{c\varphi}{v_g}$$

Note: W: stored energy per unit length (energy density)

$$P_{\rm f} = W v_g$$

D: cell length $D = \varphi \cdot c / \omega$ φ : phase advance per cell

$$\Gamma = \frac{(\beta - 1)(\beta + 1) - Q_0^2 (\Delta F)^2}{(\beta + 1)^2 + Q_0^2 (\Delta F)^2} - j \frac{2\beta Q_0 \Delta F}{(\beta + 1)^2 + Q_0^2 (\Delta F)^2}$$
 Imaginary part

$$\Gamma \approx -j \frac{2\beta Q_0' \Delta F}{(\beta+1)^2 + Q_0'^2 (\Delta F)^2} \approx j \frac{Q_0' \Delta f_0}{f_0}$$

Get the local reflection of each cell

The wave

$$A_n = A e^{j(\omega t - \varphi n)}$$
$$B_n = B e^{j(\omega t + \varphi n)}$$

The field

D

$$I_{n-1} = A_n e^{j\varphi_{n-1}} + B_n e^{-j\varphi_{n-1}}$$
$$I_n = A_n + B_n$$

$$A_{n} = \frac{I_{n-1} + I_{n}e^{-j\varphi_{n-1}}}{-2j\sin\varphi_{n-1}}$$

$$B_{n} = \frac{I_{n-1} + I_{n}e^{j\varphi_{n-1}}}{2j\sin\varphi_{n-1}}$$

$$\Gamma_{\text{local}} = \frac{B_{n} - B_{n+1}e^{-j\varphi}}{A_{n}}$$

$$\Gamma_{\text{local}} = \frac{B_{N}}{A_{N}}$$
Output

Summary of the method

- I. Do bead-pull measurement
- 2. Calculate forward and backward wave along the structure
- 3. Calculate local reflection of each cell
- 4. Calculate global reflection change due to local reflection change
- 5. Tuning each cell while monitoring the global reflection
 - 1. Start from output side
 - 2. Several iteration
- 6. Tuning the input cell to a minimum reflection

CLIC-G (TD24) N2 at 11.424 GHz

4th Annual X-band Structure Collaboration Meeting, CERN 5/4/2010

Summary of Tuning TD24

Measurement condition

	date :	19-Mar-2010
	location:	CERN
	VNA Model:	Agilent E5710C
	temperature:	$20.5^{\circ}C$
Designed frequency at $2\pi/3$:		11.424 GHz
High-pov	wer temperature:	$30^{\circ}C$
High-pow Δf due to	wer temperature: air \Rightarrow vacuum:	30°C +3.3 MHz
High-power Δf due to	wer temperature: air \Rightarrow vacuum: $20.5^{\circ}C \Rightarrow 30^{\circ}C$:	30°C +3.3 MHz -1.8 MHz
High-pow Δf due to	wer temperature: $air \Rightarrow vacuum:$ $20.5^{\circ}C \Rightarrow 30^{\circ}C:$ $w/\Rightarrow w/o$ wire:	30°C +3.3 MHz -1.8 MHz -0.3 MHz
High-pow Δf due to	wer temperature: $air \Rightarrow vacuum:$ $20.5^{\circ}C \Rightarrow 30^{\circ}C:$ $w/\Rightarrow w/o wire:$ (total):	30°C +3.3 MHz -1.8 MHz -0.3 MHz +1.2 MHz

Target f under measurement condition (w/ wire, air, 20.5°C): 11422.8 MHz

- Push and Pull are applied in 4 iterations
- Maximum frequency correction ~6MHz
- Phase adv 120.1 / cell
- Standing-wave from output reflection (real part)

90

T18

Summary of Tuning T18

- To SLAC Temperature
- Only push, 3-steps
 - Output 8 MHz
 - Input 20 MHz !
 - Regular cells 3~6 MHz
- phi = 119.9
- Real part from tapering

Compensate output coupling (proposal)

• The Points

- A: Reflection of output matching cell (Γ_N) due to coupling iris error
- **B**: Γ_N seen at N-1 Cell
- *A*': Reflection from detuned output cell Γ_N '
- $B': \Gamma_N$ 'seen at N-1 Cell
- $O: \Gamma_N$ can be cancelled by detuning the *N*-1 Cell
- High accuracy required

Summary

Accuracy

• 0.005 (-45dB) for local reflection (from experience)

The model

- vg along the structure is important
- Calculation of the output matching cell is not so accurate because of the different cell shape
- Calculation of the input matching cell need to correct the phase (use bead perturbation as reference), the last to tune.
- > The real part of the local reflection can not be corrected
 - From Tapering. Good agreement!
 - Output matching iris error cause standing wave. May be compensated by detuning the #(N-I) and the output cell

Summary

D

Integrated software tool under development

Thank you!

4th Annual X-band Structure Collaboration Meeting, CERN 5/4/2010

Þ