Breakdown Physics Workshop May 6-7, 2010 at CERN (40-S2-D01 - Salle Dirac) chaired by Walter Wuensch, Sergio Calatroni (CERN),

and Kai Nordlund, Flyura Djurabekova (U Helsinki)

Physics of Arc Plasma Devices

André Anders

Lawrence Berkeley National Laboratory, Berkeley, California

aanders@lbl.gov

This work was supported by U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Cathodic Arcs

Discharge:

- low voltage (~ 20 V) after plasma bridges anode-cathode
- □ current > chopping current
- □ strongly depends on cathode surface conditions
- plasma originates from "cathode spots" material erodes from cathode surface

Metal plasma:

- formed explosively at cathode spots
- □ fully ionized, multiple charge states
- □ supersonic ions

Devices:

- vacuum arc interrupters
- cathodic arc deposition of thin films and thick coatings (filtered and unfiltered): decorative, corrosion and wear resistant, hard
- ultrathin ta-C films for storage industry

□ Unwanted:

- □ HV insulation,
- □ SFR cavities
- □ sputtering magnetrons
- discharge lamps
- Walls of Fusion Reactors

Macroscopic, time-integrated view on cathode spots Photo courtesy of MultiArc, Inc.

Properties of Cathodic Arc Plasmas

- Plasma expands from near solid state density (10²⁷ m⁻³) in the cathode spot to very rarified plasma far from spot (e.g. down to 10¹⁴ m⁻³);
- □ at "large" distances from spot: plasma is in non-equilibrium
- □ Jüttner's formula: in absence of magnetic field and for
 - r > 100 μm

$$\frac{n \approx \gamma I_{arc} / r^2}{\gamma \approx 10^{13} \text{ A}^{-1} \text{m}^{-1}}$$

- □ For copper cathode:
- electron temperature near spot 2-4 eV
- □ plasma expansion velocity $v_i \approx 0.8 2.2 \times 10^4 \text{ m/s}$
- $\hfill\square$ average ion charge state for most metals ~ 2
- □ ion charge state near spots is even higher
- □ Electron current > arc current (this is not a typo!)
- for details see book "Cathodic Arcs" (Springer, NY 2008)

Springer

Electron Emission Mechanisms

- Physics problem: Current transfer between solid electrodes in vacuum
- □ <u>Nature's solution</u>: Electron emission + plasma generation
- "collective" electron emissions:
 - \square Thermionic emission
 - Field emission
 - □ Thermo-field emission
 - **Explosive emission**

- As opposed to "*individual*" e-emission mechanisms:
 - Secondary electron emission by primary ion, electron, or excited atom impact
 - Photo-emission

Arc Discharge

Work Function, Schottky Effect, Tunneling

Thermofield Electron Emission

□ Current density of thermofield emission is necessarily associated with great power density → plasma formation can become explosive on ns time scale

Arc Spot Ignition: The current paradigm

Local thermal run-away process leads to micro-explosion and formation of extremely dense plasma:

High electric field, enhanced by

- 1. protrusion (roughness, previous arcing)
- 2. charged dielectrics (e.g. dust particles, flakes, oxides)
- 1. higher field leads to locally greater e-emission
- 2. Joule heat enhances temperature of emission site
- 3. higher temperature amplifies local e-emission non-linearly
- Thermal Runaway creates highly localized, dense plasma
 consequences:
 - □ ion bombardment of surrounding cathode area
 - □ non-uniform cathode sheath with non-uniform surface field

positive feedback!

Highly Localized Plasma Formation: Cathode Spots

- high resolution SEM shows clearly the violent, non-stationary nature of spot processes
- plasma is NOT produced by sputtering or evaporation but by phase transition from solid to dense plasma

Figure: Courtesy of B. Jüttner, Berlin.

© 2010, Andre Anders

A related problem: Arcing in Sputtering Magnetron

A. Anders, "Physics of arcing, and implications to sputter deposition," Thin Solid Films 502 (2006) 22-28.

Preferred Spot Ignition Area

Photo courtesy of Prof. R. De Gryse, Ghent

Laser Plasma Diagnostics of Cathode Spots

Differential Laser Absorption Photography and Spectrometry

- electron density
- temporal development With consequences for
- Current density
- Understanding of plasma formation

A. Anders, et al., IEEE Trans. Plasma Sci. 20 (1992) 466. A. Batrakov, et al., IEEE Trans. Plasma Sci. 31 (2003) 817.

Observation of Small Gap Vacuum Breakdown

- □ Laser absorption photography of vacuum breakdown event, Cu, 100 A, ∆t between pictures 3 ns
- □ Spark phase of the arc: voltage is still high

A. Anders, et al., IEEE Trans. Plasma Sci. 20 (1992) 466-472

Spot & Spot Fragment Formation

100 µm

cathode

macroparticle

anode

Absorption photography, copper cathode, UHV conditions, arc current 90 A, 232 ns after ignition, exposure time 0.4 ns

A. Anders, et al., IEEE Trans. Plasma Sci. 20 (1992) 466-472

Cathode Spot Dynamics

development of cathode spots, observed by absorption photography, Cu, 100 A, Δt between pictures 3ns

anode

cathode

 $100 \ \mu m$

anode

A. Anders, et al., IEEE Trans. Plasma Sci. 20 (1992) 466-472

cathode

Highly non-uniform, non-stationary emission

 \rightarrow electron and ion emission currents at emission centers > measured net currents

© 2010, Andre Anders

© 2010, Andre Anders

 \log_{10} (temperature)

Cohesive Energy Rule

cohesive energy = energy needed to free an atom from the solid

From energy balance considerations:

There is a direct correlation between the cohesive energy of the cathode solid and the burning voltage of cathodic arc

$$V = 14.3 \text{ V} + 1.69 \frac{\text{eV}}{\text{V}} E_{CE} \text{[eV]}$$

for 300 A vacuum arcs

Fractal Nature of Cathode Spots

A. Anders, et al., APL 86 (2005) 211503;

J. Rosén, A. Anders, J. Phys. D 38 (2005) 4184.

Cohesive Energy Rule and Ion Erosion Rate

... and other consequences like mean ion charge state ~ E_{CF}

A. Anders, Cathodic Arcs, Springer, NY, 2008.

Surface Dependence of Ignition of Emission Centers

Examples of spot motion (crater traces) in magnetic field:

proves the importance of non-metallic surface layer for emission center ignition & arc operation

© 2010, Andre Anders

Figures courtesy of B. Jüttner, Berlin.

Transition type 1 --> 2 is possible within a single arc pulse (arrows)

Figure: Courtesy of B. Jüttner, Berlin.

 $10 \ \mu m$

Apparent Motion of Emission Centers

B. Jüttner, I. Kleberg, J Phys. D: Appl. Phys. 33 (2000) 2025.

© 2010, Andre Anders

Jüttner-Kleberg Model

Erosion reduces and creates roughness

- erosion is used to condition electrodes, thereby increasing breakdown voltage, however:
- emission centers also produce roughness, potentially new emission centers

Field-stimulated non-linear waves

M.D. Gabovich, V.Y. Poritskii, JETP Lett. 33 (1981) 304.

20 µm

arc traces indicate a response of liquid cathode matter to high pressure

© 2010, Andre Anders

Macroparticle Generation

- Macroparticles are formed as part of the explosive plasma formation
- Materials is ejected from the liquid pool between plasma and solid

Figures courtesy of B. Jüttner, Berlin.

Summary and Conclusions

- Cathodic Arcs are initiated and perpetually maintained by local field enhancement and runaway process
- ignition probability and plasma properties greatly depend on cathode surface conditions
- plasma formed is highly nonstationary, goes through a transient non-ideal phase
- high pressure gradients are main drivers for ion acceleration
- charge states at cathode spots higher than measured far away
- □ local currents greater than net currents measured
- hypothesis: cathodic arcs and unipolar arcs are essentially the same, though the latter has no net current and needs high sheath voltage