Breakdown Physics Workshop May 6-7, 2010 at CERN (40-S2-D01 - Salle Dirac) chaired by Walter Wuensch, Sergio Calatroni (CERN),

and Kai Nordlund, Flyura Djurabekova (U Helsinki)

Physics of Arc Plasma Devices

André Anders

Berkeley, California Lawrence Berkeley National Laboratory,

aanders@lbl.gov

This work was supported by U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Cathodic Arcs

\Box Discharge:

- □ \Box low voltage (~ 20 V) after plasma bridges anode-cathode
- □ current > chopping current
- \Box strongly depends on cathode surface conditions
- \Box plasma originates from "cathode spots" – material erodes from cathode surface

\Box Metal plasma:

- \Box formed explosively at cathode spots
- \Box fully ionized, multiple charge states
- □ supersonic ions

\Box Devices:

- vacuum arc interrupters
- \Box cathodic arc deposition of thin films and thick coatings (filtered and unfiltered): decorative, corrosion and wear resistant, hard
- \Box ultrathin ta-C films for storage industry

\Box Unwanted:

- HV insulation,
- \Box SFR cavities
- \Box sputtering magnetrons
- \Box discharge lamps
- \blacksquare

Walls of Fusion Reactors Macroscopic, time-integrated view on cathode spots
Photo courtesy of MultiArc, Inc.

Properties of Cathodic Arc Plasmas

- \Box Plasma expands from near solid state density (10^{27} m^{-3}) in the cathode spot to very rarified plasma far from spot (e.g. down to 10^{14} m⁻³);
- \Box at "large" distances from spot: plasma is in non-equilibrium
- \Box Jüttner's formula: in absence of magnetic field and for
	- $r > 100 \mu m$

$$
\frac{n \approx \gamma I_{arc} / r^2}{\gamma \approx 10^{13} \text{ A}^{-1} \text{m}}
$$

- \Box For copper cathode:
- \Box electron temperature near spot 2-4 eV
- \Box $\textcolor{red}{\Box}$ plasma expansion velocity $|v_i \approx 0.8\, - 2.2 \times 10^4$ m / s
- \Box average ion charge state for most metals \sim 2
- \Box ion charge state near spots is even higher
- \Box Electron current > arc current (this is not a typo!)
- \Box for details see book "Cathodic Arcs" (Springer, NY 2008)

Electron Emission Mechanisms Electron Emission Mechanisms

- □ Physics problem: Current transfer between solid electrodes in vacuum
- \Box Nature's solution: Electron emission + plasma generation
- □ *"collective*" electron emissions:
	- Thermionic emission
	- Field emission
	- Thermo-field emission
	- □ Explosive emission

- As opposed to "*individual*" e-emission mechanisms:
	- Secondary electron emission by primary ion, electron, or excited atom impact
	- Photo-emission

Arc Discharge

Work Function, Schottky Effect, Tunneling

Thermofield Electron Emission

□ Current density of thermofield emission is necessarily associated with great \Box power density \rightarrow plasma formation can become explosive on ns time scale

Arc Spot Ignition: The current paradigm

Local thermal run-away process leads to micro-explosion and formation of extremely dense plasma:

High electric field, enhanced by

- 1.protrusion (roughness, previous arcing)
- 2.charged dielectrics (e.g. dust particles, flakes, oxides)
- 1.higher field leads to locally greater e-emission
- 2.Joule heat enhances temperature of emission site
- 3.higher temperature amplifies local e-emission non-linearly
- Thermal Runaway creates highly localized, dense plasma consequences:
	- ion bombardment of surrounding cathode area
	- non-uniform cathode sheath with non-uniform surface field

positive feedback!

Highly Localized Plasma Formation: Cathode Spots

- high resolution SEM shows clearly the violent, non-stationary nature of spot processes
- plasma is NOT produced by sputtering or evaporation but by phase transition from solid to dense plasma

Figure: Courtesy of B. Jüttner, Berlin.

© 2010, Andre Anders

A related problem: Arcing in Sputtering Magnetron

A. Anders, "Physics of arcing, and implications to sputter deposition," Thin Solid Films 502 (2006) 22-28.

Preferred Spot Ignition Area

Photo courtesy of Prof. R. De Gryse, Ghent

Laser Plasma Diagnostics of Cathode Spots

Differential Laser Absorption Photography and Spectrometry

- electron density
- temporal development With consequences for
- •Current density
- •Understanding of plasma formation

A. Anders, *et al.*, IEEE Trans. Plasma Sci. **20** (1992) 466. A. Batrakov, *et al*., IEEE Trans. Plasma Sci. 31 (2003) 817.

Observation of Small Gap Vacuum Breakdown

- \Box Laser absorption photography of vacuum breakdown event, Cu, 100 A, Δt between pictures 3 ns
- \Box Spark phase of the arc: voltage is still high

© 2010, Andre Anders

A. Anders, *et al.*, IEEE Trans. Plasma Sci. **20** (1992) 466-472

Spot & Spot Fragment Formation

$100 \ \mu m$

cathode

macroparticle macroparticle

anode

Absorption photography, copper cathode, UHV conditions, arc current 90 A, 232 ns after ignition, exposure time 0.4 ns

A. Anders, *et al.*, IEEE Trans. Plasma Sci. **20** (1992) 466-472

Cathode Spot Dynamics

 development of cathode spots, observed by absorption photography, Cu, 100 A, Δt between pictures 3ns

anode cathode $100 \ \mu m$ A. Anders, *et al.*, IEEE Trans. Plasma Sci. **20** (1992) 466-472© 2010, Andre Anders

anode

cathode

Highly non-uniform, non-stationary emission

 \rightarrow electron and ion emission currents at emission centers > measured net currents

16

© 2010, Andre Anders

© 2010, Andre Anders

 $\log_{10}(\text{temperature})$

Cohesive Energy Rule

cohesive energy $=$ energy needed to free an atom from the solid

From energy balance considerations:

There is a direct correlation between the cohesive energy of the cathode solid and the burning voltage of cathodic arc

$$
V = 14.3 \text{ V} + 1.69 \frac{\text{eV}}{\text{V}} E_{CE} [\text{eV}]
$$

for 300 A vacuum arcs

Fractal Nature of Cathode Spots

A. Anders, et al., APL 86 (2005) 211503;

J. Rosén, A. Anders, J. Phys. D 38 (2005) 4184.

Cohesive Energy Rule and Ion Erosion Rate

\ldots and other consequences like mean ion charge state $\sim E_{CE}$

A. Anders, Cathodic Arcs, Springer, NY, 2008.

Surface Dependence of Ignition of Emission Centers

Examples of spot motion (crater traces) in magnetic field:

proves the importance of non-metallic surface layer for emission center ignition & arc operation

© 2010, Andre Anders

21 Figures courtesy of B. Jüttner, Berlin.

Transition type $1 - 2$ is possible within a single arc pulse (arrows)

22

Figure: Courtesy of B. Jüttner, Berlin.

 $S_{\mathcal{S}}$ and $S_{\mathcal{S}}$ and $S_{\mathcal{S}}$ and $C_{\mathcal{S}}$ and $C_{\mathcal{S}}$ and $C_{\mathcal{S}}$

 $10 \ \mu m$

© 2010, Andre Anders

Apparent Motion of Emission Centers

B. Jüttner, I. Kleberg, J Phys. D: Appl. Phys. 33 (2000) 2025.

Jüttner-Kleberg Model

Erosion reduces and creates roughness Erosion reduces and creates roughness

- erosion is used to condition electrodes, thereby increasing breakdown voltage, however:
- emission centers also produce roughness, potentially new emission centers

Field-stimulated non-linear waves

M.D. Gabovich, V.Y. Poritskii, JETP Lett. 33 (1981) 304.

 $20 \mu m$

 arc traces indicate a response of liquid cathode matter to high pressure

Macroparticle Generation

- \Box Macroparticles are formed as part of the explosive plasma formation
- \Box Materials is ejected from the liquid pool between plasma and solid

Figures courtesy of B. Jüttner, Berlin.

Summary and Conclusions

- □ Cathodic Arcs are initiated and perpetually maintained by local field enhancement and runaway process
- \Box ignition probability and plasma properties greatly depend on cathode surface conditions
- plasma formed is highly nonstationary, goes through a transient non-ideal phase
- □ high pressure gradients are main drivers for ion acceleration
- □ charge states at cathode spots higher than measured far away
- □ local currents greater than net currents measured
- hypothesis: cathodic arcs and unipolar arcs are essentially the same, though the latter has no net current and needs high sheath voltage