Recent BSM Higgs Searches from ATLAS Adam Bailey (CSIC / IFIC) on behalf of the ATLAS collaboration LHC Higgs XS WG3 20/09/2018

BSM Higgs

- Several theories predict extended Higgs sectors
- For example, 2HDM has two Higgs doublets, 5 Higgs:

- Theories have to account for the measurements of the 125 GeV Higgs
- Can search for heavy Higgs or di-Higgs signals
- Also low mass results below 125 GeV, typically look for decays of 125 GeV Higgs to scalars.

Н

h

Contents

Will summarise some recent BSM Higgs results from ATLAS

- <u>125 GeV Higgs measurements combination</u>
- Di-Higgs: $hh \rightarrow bb\tau\tau$, $hh \rightarrow bbyy$ (backup)
- Charged Higgs: $\underline{H}^{\pm} \rightarrow \tau v$
- H to fermions: $H/A \rightarrow \tau \tau$
- H to bosons: $H \rightarrow WZ \rightarrow leptons$
- Light Resonances: $H \rightarrow bb\mu\mu$, $H \rightarrow yyjj$, low mass $H \rightarrow yy$

Note - this is not a complete list, selection of some from each channel

MSSM

- MSSM: Minimal extension of the Standard Model that includes Supersymmetry
 - Unification of forces at high energy
 - Gives a natural dark matter candidate
 - Mass of SUSY particles >> SM partners

- hMSSM: mass of observed Higgs used to predict remaining masses/couplings
- m_h^{max} : m_h^{h} is maximised for a given tan β and large m_A^{h}
- m^{mod+/-}: benchmarks where lightest Higgs matches that observed
 - Modification of m_h^{max} .
 - Mixing in the stop sector is reduced $(|X_t/M_{SUSY}|)$ to enable $m_h = 125 \text{ GeV}$
 - \circ +/- scenarios are for the sign of X_t

Limits on BSM from 125 GeV Higgs Measurements

- Combined measurements on 125 GeV Higgs now available
- Indirectly places limits on hMSSM parameter space from the measured production/decay rates

Limits on BSM from 125 GeV Higgs

Limits on hMSSM models:

Di-Higgs Searches

- Destructive interference between SM di-Higgs production
- Can be enhanced in BSM theories via new intermediate particles eg. BSM heavy (CP-even) Higgs, spin-2 KK excitons of graviton

$hh \rightarrow b\bar{b}\tau\tau$: Introduction

- Analysis at $\sqrt{s} = 13$ TeV with 36.1 fb⁻¹, from Aug 2018
- Final state: 2 b-tagged jets, with $\tau_{had} \tau_{had} \tau_{lep}$ (opposite charge), plus E_{τ}^{miss}
- Backgrounds: tt, QCD multijet, and Z + jets (bb/bc/cc).
 - SM H + Z production is irreducible
- Search for both resonant and non-resonant production

$hh \rightarrow b\bar{b}\tau\tau$: Event Selection

bb τ _{had} τ _{lep}	bb τ _{had} τ _{had}
 Single lep trigger (p_T > 25-27 GeV) If fails that, consider lep+τ_{had} trigger: if e (μ) has p_T > 18 (15) GeV τ_{had} p_T > 20 (30) GeV for lep (lep+τ_{had}) trigger Lead jet p_T > 45 GeV (80 GeV for lep-τ_{had} in 2016) Sub-lead τ_{had} p_T > 20 m_{ττ}^{MMC} > 60 GeV 2 b-tagged jets 	 Single τ OR di-τ trigger p_T > 40-180 GeV Lead jet p_T > 45 (80) GeV for single τ (di-τ) trigger Sub-lead τ_{had} p_T > 20 (30) GeV for single τ (di-τ) trigger m_{ττ} ^{MMC} > 60 GeV 2 b-tagged jets

$hh \rightarrow b\bar{b}\tau\tau$: BDT Discriminant

- 3 signal regions:
 - $\tau_{had} \tau_{had}$: train against tt, Z $\rightarrow \tau \tau$ and multijet
 - $\circ ~~\tau_{lep} \tau_{had}$ single lepton trigger (resonant): train against dominant $t\bar{t}$
 - $\circ \quad \tau_{lep}^{\tau}\tau_{had}$ non-resonant and lep+ τ trigger: train against dominant $t\bar{t}$
- For BDT: data-driven multijet estimate, $t\bar{t}$ and $Z \rightarrow \tau \tau$ from simulation
- For resonant search: train separately for each signal mass
 - Signal model contains neighbouring masses to allow sensitivity between points
- For non-resonant, signal sample is mixture of box and triangle diagram production

$hh \rightarrow b\bar{b}\tau\tau$: Backgrounds

- Estimate fake τ_{had} from jets using fake factor method
- In $\tau_{lep}\tau_{had}$: fake factors for fake τ_{had} from t, W+jets, multijet (separate for each background)
- In $\tau_{lep} \tau_{lep}$: fake factor for multijet, tt from simulation (with fake rate)
- Validate in same-sign regions

$hh \rightarrow b\bar{b}\tau\tau$: Results

- Top: single lepton trigger $\tau_{lep} \tau_{had}$
- Bottom: $\tau_{had} \tau_{had}$
- Left: resonance search
- Right: KK Graviton search

Plots for $\tau_{\text{lep}}\tau_{\text{had}}$ trigger in backup

$hh \rightarrow b\bar{b}\tau\tau$: Limits

Signal regions are combined for statistical fit

Top: hMSSM scalar

Bottom RS graviton

$H^+ \rightarrow \tau v$: Introduction

- Results at 13 TeV, with 36.1 fb⁻¹
- Search for t-associated production:
 - \circ τ_{had} + jets, τ_{had} + e, and τ_{had} + μ channels
- For CP conserving 2HDM, properties of H⁺ depend on α (mixing angle of the neutral CP-even H bosons) and tan β

$H^+ \rightarrow \tau v$: Event Selection

τ _{had} + jets	τ _{had} + e / μ
• E_T^{miss} trigger • p_T threshold 70/90/110 GeV • $\tau_{had} p_T > 40$ GeV • e and μ veto • ≥ 3 jets with $p_T > 25$ GeV, ≥ 1 b-tag • $E_T^{miss} > 150$ GeV • $m_T (\tau_h, E_T^{miss}) > 50$ GeV	 e or µ trigger, with either: p_T > 24-26 GeV + isolation p_T > 60-140 GeV with looser isolation requirements I p_T > 30 GeV (trigger matched) ≥1 b-jet with p_T > 25 GeV E_T^{miss} > 50 GeV
τ _{had} passes medium ID:	

efficiency 75% (60%), QCD multijet rejection ~30 (30) for 1 (3) tracks

$H^+ \rightarrow \tau v$: Signal Generation

- Use MadGraph5_aMC@NLO, in three mass regions:
 - 90–150 GeV: Simulate tt events, one top-quark decays to charged Higgs boson and a b-quark, at LO
 - **160–180 GeV**, generate full process $pp \rightarrow H^+W$ bb at LO
 - **200–2000 GeV**, H⁺ production in association with a top-quark at NLO

$H^+ \rightarrow \tau v$: Background Rejection and Modelling

- Main backgrounds: tī, single t, W+jets, Z/γ+jets, WW/WZ/ZZ, and multijet.
- Simulation for real τ_{had} , data driven fake factors for jets faking τ_{had}
- Obtain t normalisation from region in data (like τ_{had} + lepton, but with e+µ)
- Use multivariate discriminant, in 5 signal mass bins, BDTs for $\tau_{had}^{}$ j, $\tau_{had}^{}$ l

$H^+ \rightarrow \tau v$: Postfit Plots

Signal region plots from three channels, for one mass bin (others in paper)

$H^+ \rightarrow TV$: Limits

- Limits on hMSSM parameter space [left]
- $(pp \rightarrow tbH^+ \text{ production}) \times (H^+ \rightarrow \tau^+ \nu)$ [top right]
- $(t \rightarrow bH^+ \text{ production}) \times (H^+ \rightarrow \tau^+ \nu)$ [bottom

First limits in intermediate mass regions for this analysis

$H/A \rightarrow TT$: Introduction

- 36.1 fb⁻¹ of p-p collision data at 13 TeV
- For large tanβ, couplings to down-type fermions are enhanced
 - $\circ \quad \text{Higher } H \to \tau \text{ branching fraction}$
 - Enhanced production associated with b-quarks
- Look for two back-to-back τ, opposite charge
- Two channels $\tau_{lep} \tau_{had}$ (~46%) and $\tau_{had} \tau_{had}$ (~42%)
 - Consider both gg-fusion and b-associated production
 - Therefores, split into b-tagged and b-veto categories

$H/A \rightarrow \tau \tau$: Event Selection

τ _l τ _h	τ _h τ _h	
 Single μ or e trigger p_T between 20-140 GeV τ_h passes medium jet BDT discrim. Δφ > 2.4 m_T (p_T⁻¹, E_T^{miss}) < 40 GeV Removes W + jets 80 GeV < m_{vis}(p¹, p^τ) < 110 GeV Only in e channel, remove Z → ee peak 	 τ_h trigger p_T > 80 / 125 / 160 GeV Lead (sublead) τ passes medium (loose) jet BDT discrim. Δφ > 2.7 Sublead τ p_T > 65 GeV Veto e and μ 	
Medium ID: τ efficiency 75% (60%), QCD multijet rejection ~30 (30) for 1 (3) tracks Loose ID: τ efficiency 85% (75%), QCD multijet rejection ~50 (100) for 1 (3) tracks		

	$H/A \rightarrow \tau \tau$: Backgrounds	
	τ _ι τ _h	$\tau_h \tau_h$
•	QCD multijet [fake τ _l + fake τ _h] W + jets (b-tag) / tt (b-veto) [real l, fake τ _h from jet]	 QCD multijet [2 fake τ_h]
• $Z/\gamma^* \rightarrow \tau\tau$ (b-tag) / $t\bar{t}$ (b-veto) [real τ] • $Z/\gamma^* \rightarrow II$ [I fakes τ_h^+ real I] • Diboson • Single t		 Z/γ* → ττ [2 real τ] W → τν + jets [real τ + jet fake] tt̄, single top [real τ, or lep/jets fakes] Others: W → lν + jets, Z/γ* → ll + jets, diboson
	Data-driven fake factor method for fake τ	Simulation for real τ , with fake rate for $j \rightarrow \tau_h$ (in $\tau_h \tau_h$)

H/A → TT: Systematic Uncertainties

- Assess impact on cross section limits
- μ_{stat}^{95} = limit with no systematics included
- μ_i^{95} = limit including group of systematics i

$H/A \rightarrow \tau \tau$: Cross Section Limits

• $\tau_{lep}\tau_{had}$ more sensitive below m_{H}^{\sim} 0.6 TeV, $\tau_{had}^{\sim}\tau_{had}$ more sensitive above.

gg-fusion

b-associated

$H/A \rightarrow \tau \tau$: tan β vs m_A Parameter Space

$H/A \rightarrow \tau \tau$: Other Limits

- 2D log likelihood scans for different Higgs masses →
- Limits vs b-tag fraction

$\textbf{H} \rightarrow \textbf{WZ: Introduction}$

- Search in fully leptonic channel (lvll), from qq fusion and VBF production
 - Not the highest branching ratio, but lower backgrounds.
 - Use single lepton triggers
- Vector resonances predicted in various BSM scenarios:
 - GUTs, Little Higgs, composite Higgs etc.
- Results from models with extend Higgs sector
 - Interpretations include heavy vector triplet, Georgi-Machacek model (benchmark for single charged scalar resonance, 1 real 1 complex triplet)

$H \rightarrow WZ$: Selection

- $Z \rightarrow l^+l^-$ (same flavour). Pick those closest to Z mass, use medium e/µ ID
- $W \rightarrow Iv$. Require tight lepton ID (background rejection)
 - Veto events with 4 leptons

VBF Category	qq Category
 ≥ 2 jets (use 2 highest p_T) p_T > 30 GeV Δη_{jj} > 3.5 m_{jj} > 500 GeV b-veto to reduce backgrounds 	 W/Z produced via s-channel resonance m_{WZ} > 250 GeV Expect E_T^{miss} close to 50% of mass: p_T^W / m_{WZ} > 0.35 p_T^Z/m_{WZ} > 0.35

$H \rightarrow WZ$: Signal Acceptance

- Left: GM model VBF. (HVT VBF in backup). Right: qq HVT acceptance
- Produced from simulated signal events

$H \rightarrow WZ$: Backgrounds

- For resonance search, SM WZ production:
 - MC estimate, with dedicated validation regions
 - VBF: invert cuts on dijet variables
 - \circ WZ qq: invert p_T / m_{wz} cuts
- Background from y or jets faking leptons:
 - Z+jets, Zγ, Wγ, tt̄, single t, WW
 - Data driven, using "Matrix Method"
- Others (ttV, ZZ, tZ, WZbj, triple boson) estimated with MC

$H \rightarrow WZ$: Systematics

Source	$\Delta \mu / \mu$ [%]	
	$q\bar{q}$ Category m(W') = 800 GeV	VBF Category $m(H_5^{\pm}) = 450 \text{ GeV}$
WZ modelling : Scale, PDF	5	11
WZ modelling : Parton Shower	10	6
MC statistical uncertainty	7	8
Electron identification	4	2
Muon identification	3	3
Jet uncertainty	1	8
Missing transverse momentum	2	1
Fake/non-prompt	1	5
Total systematic uncertainty	17	21
Statistical uncertainty	53	52

$H \rightarrow WZ$: Results

Postfit plots in signal regions

H → WZ: Branching Fraction Limits

- Local excess in VBF ~450 GeV: 2.9 σ (3.1 σ) for H₅^{+/-} (heavy vector W')
 - With look-elsewhere effect 1.6 σ (1.9 σ).

$H \rightarrow WZ$: GM Model Limits

• Limits on specific GM model

$H \rightarrow aa \rightarrow b\bar{b}\mu\mu$: Introduction

- 125 GeV Higgs to new spin-zero light resonances a (scalar or psuedoscalar)
 Predicted with extended Higgs sector, dark matter models and more
- Usually high b branching ratio, paired with µµ gives distinctive signature
- Characterised by $m_{\mu\mu} \approx m_{bb}$, and $m_{bb\mu\mu} \approx 125 \text{ GeV}$

Selection:

- 2 b-jets ($p_T > 20 \text{ GeV}$), $\mu^+\mu^-$ ($p_T > 27, 7 \text{ GeV}$).
- 16 < m_{uu} < 64 GeV
- Use kinematic likelihood (KL) fit to test $m_{uu} \approx m_{bb}$.
- Gives max likelihood value (In (L^{max})): quantifies how well event fits constraints
- $|m_{bb\mu\mu}(KL) m_{H}| < 15 \text{ GeV}, \ln(L^{max}) > -8, E_{T}^{miss} < 60 \text{ GeV}.$

$H \to aa \to b\bar{b}\mu\mu$

- Dominant backgrounds:
 - DY µµ events + b-quarks
 - $\circ t \bar{t}$, where both W from tops decay to μ

- Use several control regions:
 - Top CR: invert E_{T}^{miss} cut
 - \circ DY CR: invert requirement on m_{bbµµ} invariant mass
- Model tt kinematics using simulation, plus two validation regions
- DY templates: define template regions by using zero b-tag requirement

$H \rightarrow aa \rightarrow b\bar{b}\mu\mu$ Systematics

Source	Total background [%]	Signal [%]
DY: normalisation	9.3-15	_
DY: flavour composition	6.9-11	-
DY: background subtraction	0.4-2.4	-
tī: hard-scatter generation	3.6-8.6	
tī: hadronisation/parton-shower	3.2-7.7	-
tī: normalisation	2.1-5.0	-
tī: ISR/FSR	1.0-2.4	-
MC statistics	2.4-4.9	2.3-4.6
b-tagging	0.6-1.5	17-19
Jet-energy resolution	0.3-2.9	5.2-8.4
Jet-energy scale	0.3-2.9	3.9-6.5
Muon- $p_{\rm T}$ resolution	0.1-2.2	0.3-1.2
Luminosity	< 0.01	2.1
Signal: QCD scale	-	6
Signal: ISR/FSR		4
Signal: ggF cross-section		
- missing higher-order QCD		3.6-3.8
- PDF & $\alpha_{\rm S}$		2.8-3.0
Signal: VH contribution	-	3.5
Signal: $p_{\rm T}(H)$ reweighting	-	2.3-2.5

$H \rightarrow aa \rightarrow b\bar{b}\mu\mu$: Results

- First do background only fit: only top CR and DY CR constrain backgrounds
 - Verifies post-fit background yields agree in validation/signal regions.
- Signal and control regions:

$H \rightarrow aa \rightarrow b\bar{b}\mu\mu$: Limits

• Limits presented on $H \rightarrow aa \rightarrow b\bar{b}\mu\mu$ branching (left), and model independent limits on new physics in $b\bar{b}\mu\mu$ final state (right)

$H \rightarrow aa \rightarrow \gamma \gamma jj$: Summary

- Another search for new scalars (20-60 GeV)
- Covers models where fermionic decays are suppressed
- First direct search in this channel (36.7 fb⁻¹)
- Production via VBF:
 - Produces 2 additional light quark jets, with large angular separation, large invariant mass: 4 jets in total
 - \circ Pair with highest invariant mass taken as those from VBF (m_{ii} ^{VBF})
 - \circ Other two taken as "signal jets" (m_{ii})
- Good m_{yy} resolution (~1.3 GeV) use 5 regions to take advantage of this

m _{γγ} regime	Definition	Range of m_a values	x _R [GeV]
1	17.5 GeV $< m_{\gamma\gamma} < 27.5$ GeV	20 GeV $\leq m_a \leq$ 25 GeV	12
2	22.5 GeV $< m_{\gamma\gamma} < 37.5$ GeV	25 GeV $\leq m_a \leq$ 35 GeV	12
3	32.5 GeV $< m_{\gamma\gamma} < 47.5$ GeV	35 GeV $\leq m_a \leq$ 45 GeV	16
4	42.5 GeV $< m_{\gamma\gamma} < 57.5$ GeV	45 GeV $\leq m_a \leq$ 55 GeV	20
5	52.5 GeV $< m_{\gamma\gamma} < 65.0$ GeV	55 GeV $\leq m_a \leq$ 60 GeV	24

$H \rightarrow aa \rightarrow yyjj$: Selection and Kinematics

- Selection: Based on jet kinematics
- m_{jj}^{VBF} > 500 GeV, p_T lead VBF jet > 60 GeV, 100 < $m_{jj\gamma\gamma}$ < 150 GeV, Kinematic distributions before m_{jj}^{VBF} cuts:

$H \rightarrow aa \rightarrow \gamma\gamma jj$: Results

- Main background is yy + multijet
 - Data driven estimate from 2D sidebands ABCD method
- Set limits in each region:

Low Mass yy: Summary

- Search for new resonances decaying to photons
- Diphoton signature in 65 110 GeV range, isolated y with high p_{τ}
- Continuum photon background + yj, jj, DY peak from $Z/\gamma^* \rightarrow ee$
 - Shape of DY from $Z \rightarrow ee$ sample (with $e \rightarrow y$)
 - Continuum fit on data
- 3 categories, based on converted (C) or unconverted (U) photons:
 UU, CU, CC

Low Mass yy: Results

Right: background-only fit in each category

Bottom: Combined limits on $\boldsymbol{\sigma}$

adam.bailey@cern.ch

hMSSM Summary Plot

• Summary of early Run 2 results - updates in progress

HH Summary Plot

Summary of HH limits

Future Prospects

• Projections from <u>Djouadi et al.</u> for 300 fb⁻¹

- Expect more Run 2 results from ATLAS
- Full Run 2 will be ~150 fb⁻¹, good prospects for analyses.

Backup: HH \rightarrow **bbTT BDT**

Variable	$ au_{\text{lep}} au_{\text{had}} ext{ channel}$ (SLT resonant)	$\tau_{lep} \tau_{had}$ channel (SLT non-resonant & LTT)	$ au_{had} au_{had}$ channel
<i>m</i> _{HH}	\checkmark	\checkmark	\checkmark
$m_{\tau\tau}^{\rm MMC}$	\checkmark	\checkmark	\checkmark
m _{bb}	\checkmark	\checkmark	\checkmark
$\Delta R(\tau,\tau)$	\checkmark	\checkmark	\checkmark
$\Delta R(b, b)$	\checkmark	\checkmark	\checkmark
$E_{\rm T}^{\rm miss}$	\checkmark		
$E_{\rm T}^{\rm miss}\phi$ centrality	\checkmark		\checkmark
m_{T}^{W}	\checkmark	\checkmark	
$\Delta \phi(H,H)$	\checkmark		
$\Delta p_{\rm T}({\rm lep}, \tau_{\rm had-vis})$	\checkmark		
Sub-leading b-jet pT	\checkmark		

Backup: HH \rightarrow **bbTT**, **T**_{lep}**T**_{had} **trigger BDT Score**

Backup: $hh \rightarrow b\bar{b}\gamma\gamma$: Introduction

- Analysis at $\sqrt{s} = 13$ TeV with 36.1 fb⁻¹, from Aug 2018
- 2 isolated γ , \geq 2 jets with m_{ii} ~125 GeV. At least 1 b-jet
 - $\gamma\gamma$ trigger ($E_T > 35$ and 25 GeV)
 - Split into 1 b-tag, 2 b-tag categories
 - Tight selection: higher-mass resonances ($m_{\chi} > 500$ GeV) and non-resonant (typically higher p_{T})
 - Loose selection: low-mass resonances (m_{χ} ≤ 500 GeV) and non-SM Higgs self coupling
- Use m_{yy} for non-resonant search, m_{yyjj} for resonant

Backup: $hh \rightarrow bbyy$: Selection

- Main backgrounds: single H (from ggH, ZH, ttH, tH), non-resonant continuum spectra (yy, yj, jj in association with jets)
 - Use data-driven estimates
- Loose: jet p_T > 40, 25 GeV, 80 < m_{jj} < 140 GeV
 Tight: jet p_T > 100, 30 GeV, 90 < m_{jj} < 140 GeV
- Resonant: m_{yy} within 4.7 (4.3) GeV of Higgs mass in loose (tight) lacksquare
- Use BDT for resonant: simulate continuum events and resonance signals

Backup: $hh \rightarrow b\bar{b}\gamma\gamma$: Results

Non-resonant search

Backup: $hh \rightarrow b\bar{b}\gamma\gamma$: Results

Resonant search

Backup: $hh \rightarrow b\bar{b}\gamma\gamma$: Limits

- Left: Non-resonant, set limits on: $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$
 - \circ Red is prediction if $\kappa_{\lambda}^{}$ is varied, but other couplings fixed at SM
 - Observed limit is 22 x SM cross-section
- Right: resonant limit

Backup: hh $\rightarrow b\bar{b}\gamma\gamma$ 0 b-tag control region

Backup: $H^+ \rightarrow \tau \nu BDT$

• Polarisation of the τ-lepton included via Y:

Only defined for 1-prong τ_{had}. Used for 90-400 GeV signal mass, where 1p/3p are split. Otherwise BDT is prong inclusive.
 BDT input variable | Thad vis tiets | Thad

BDT input variable	$\tau_{had-vis}$ +jets	$\tau_{had-vis}$ +lepton
$E_{ m T}^{ m miss}$	\checkmark	\checkmark
$p_{\mathrm{T}}^{ au}$	\checkmark	\checkmark
$p_{\mathrm{T}}^{b-\mathrm{jet}}$	\checkmark	\checkmark
p_{T}^{ℓ}		\checkmark
$\Delta \phi_{ au_{ m had-vis}, m miss}$	\checkmark	\checkmark
$\Delta \phi_{b}$ -jet, miss	\checkmark	\checkmark
$\Delta \phi_{\ell, \text{miss}}$		\checkmark
$\Delta R_{ au_{ m had-vis},\ell}$		\checkmark
$\Delta R_{b- ext{jet}, \ell}$		\checkmark
$\Delta R_{b-\text{jet}, \tau_{\text{had-vis}}}$	\checkmark	
Y	\checkmark	\checkmark

Backup: H/A → **TT Fake Factors**

- Usually the probability of faking τ/lepton not well-modelled in MC:
 Poquiros data drivon methods
 - Requires data driven methods
- Use several control regions (CR) and fake factors
- CR with ID requirement inverted, weight those events by a fake factor *f*:

$$N_{\text{background}}^{\text{SR}}(v; \mathbf{x}) = f(\mathbf{x}) \times [N_{\text{data}}^{\text{CR}}(v; \mathbf{x}) - N_{\text{other bg}}^{\text{CR}}(v; \mathbf{x})]$$

• Fake factor calculated in background-enriched region, defined as:

$$f(\mathbf{x}) = \frac{N_{\text{data}}^{\text{pass}}(\mathbf{x})}{N_{\text{data}}^{\text{fail}}(\mathbf{x})}$$

Backup: $H/A \rightarrow T_{had} T_{had}$ Multijet Background

- Estimate non-multijet backgrounds using MC, and subtract them.
- Fake factor, **f**_{DJ} calculated in region dominated by multijet events
- $\mathbf{f}_{DJ} = N \tau_2$ pass loose / $N \tau_2$ fail loose
- Applied to region like SR, but sub-lead τ fail loose ID

Fake factors show agreement in b-tag/veto/inclusive categories. Use b-inclusive, with extra stat uncertainty when using b-tag.

Backup: H/A \rightarrow **T**_{lep} **T**_{had} **Data Driven Backgrounds**

Events with fake τ are mixture of W + jet and multijet, different fake factors

adam.bailey@cern.ch

$H/A \rightarrow T_h T_h$ Fake Rates

- For non-multijet backgrounds, estimate from simulation.
- Don't apply τ ID to simulation instead weight simulation by fake rate
 Ensures correct fake rate and uses all MC stats
- Lead τ : N pass ID and τ trigger / N total
- Subleading τ: N pass ID / N total

- Use two regions, enriched in tt or W+jets events:
 - **For W + jets,**: μ trigger (isolated) $p_T > 55$ GeV, τ_1 (no ID) $p_T > 50$ GeV, e-veto, $\Delta \phi > 2.4 m_T (p_T^{\mu}, E_T^{miss}) > 40$, no b-tagged jets.
 - **For tt**: Same, but with at least 1 b-tagged jet

Backup: H \rightarrow WZ acceptance in HVT models

Backup: Low Mass yy p-value

