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“We want an outsider’s perspective…” — P. Harris
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The first BOOST conference: 2009

2 days, 35 participants, ~16 talks

Boosted tops: 10 talks

BOOST = boosted tops and lepton jets !!??

Lepton jets: 4 talks



QCD theory

Tagging

PileupHiggs/BSM

SM measurements

BOOST
5 days, ~110 participants, ~60 talks

A rich and vibrant field at the interface of theory and experiment

This BOOST conference: 2019
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Disclaimer: a highly personal take, focused primarily 
on BSM and deep learning. 

Apologies in advance that I don’t cover every topic. 
Stay tuned for many interesting talks at this conference!
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Where is the new physics????
dark matter

matter/anti-matter asymmetry

neutrino masses

We know physics beyond the SM 
must exist…
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hierarchy problem
grand unification

flavor puzzle
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strong CP problem

And many other puzzles hint at 
new physics…



Hierarchy problem

In particular, naturalness strongly motivates “top partners” at 
the TeV-scale. 
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Example:  SUSY
scalar top partners (stops)



Hierarchy problem

Figure 1. One-loop Higgs mass renormalization in a model with a fermionic top partner,

such as the Littlest Higgs.

the theory. What is the minimal set of new particles that must appear below 1 TeV to

avoid fine-tuning? It is well known that the only SM contribution to the Higgs mass

that must be modified at sub-TeV scales is the one-loop correction from the top sector.

All other SM loops are numerically suppressed by either gauge or non-top Yukawa cou-

plings, by extra loop factors, or both. As a result, the states responsible for cutting o↵

these loops can lie above 1 TeV with no loss of naturalness. Thus, the sub-TeV particles

that soften the divergence in the top loop, the “top partners,” provide a uniquely well-

motivated target for searches at the LHC, and it must be ensured that a comprehensive,

careful search for such partners is conducted.

The best-known mechanism for canceling the Higgs mass divergences is super-

symmetry (SUSY). In SUSY models, the quadratic divergence in the SM top loop is

cancelled by loops of scalar tops, or stops. Recently, a number of papers [2] empha-

sized the importance of stop searches at the LHC, and reinterpreted the published

LHC results, based on the 1 fb�1 integrated luminosity data set, in terms of bounds

on stop masses. It was found that completely natural spectra are allowed so far. On

the other hand, incorporating a 125 GeV Higgs in the Minimal SUSY Model (MSSM)

does require significant fine-tuning, of order 1% at best. (Fine-tuning can be reduced

in non-minimal models [3].)

However, SUSY is not the only option for canceling the quadratic divergence in the

SM top loop. An alternative is to introduce a spin-1/2 top partner T , a Dirac fermion

with mass mT , which is an SU(2)L singlet, color triplet, and has electric charge 2/3.

In the Weyl basis, T = (TL, TR). This field couples to the SM Higgs doublet H via

L = ��TT
†
RH̃Q3 +

�
2
t + �

2
T

2mT
(H†

H)T †
LTR + h.c. , (1.1)

where Q3 is the SM third-generation left-handed quark doublet, �t is the SM top

Yukawa, �T is a new dimensionless coupling constant, and H̃ = (i�2H)†. The one-
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In particular, naturalness strongly motivates “top partners” at 
the TeV-scale. 

fig. from 1205.0013

Example:  composite Higgs
fermonic top parters



Boosted jets from top partners

Decays of heavy top partners
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⇒ highly boosted tops, W/Z’s and Higgs



Boosted new physics

NP itself could be highly boosted as well, e.g.

ATLAS 1904.12679
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1 Introduction
New particles that decay into quarks and gluons and produce fully hadronic signatures are
predicted in many models of physics beyond the standard model (SM) [1–3]. For instance,
the violation of baryon number in certain supersymmetric (SUSY) models leads to colored
superpartners producing fully hadronic final states [4]. In this paper, we report on a generic
search for pair-produced resonances decaying to two light quarks (qq0) or one light quark and
one bottom quark (bq0).

Minimal SUSY models introduce R-parity, associated with a Z2 symmetry group called R sym-
metry, to forbid terms in the SUSY potential that naturally lead to the violation of baryon or
lepton numbers [5]. After SUSY breaking, R-parity violating Yukawa interactions of the form

lijkLiLjE
c

k
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ijk
LiQjD
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k
, l00

ijk
U

c

i
D

c

j
D

c

k
, (1)

can appear in the Lagrangian, where l, l0, l00 are coupling constants, and i, j, k are quark and
lepton generation indices following the summation convention, while c denotes charge con-
jugation. The SU(2) doublet superfields of the lepton and quark are denoted by Li and Qi,
respectively, while the Ei, Ui and, Dj represent the SU(2) singlet superfields of the lepton, up-
and down-type quarks, respectively. The first and third terms in Eq. (1) are antisymmetric in
{i, j} and {j, k}, respectively. The trilinear couplings l00

ijk
permit vertices of sfermions inter-

acting with two fermions, and in baryonic R-parity-violating (RPV) models, the only nonzero
couplings in Eq. (1) are l00

ijk
, which produce interactions of squarks with two quarks.

We consider pair production of top squarks (et) as a benchmark model, assuming the et is the
lightest of the colored SUSY partners and is allowed to decay via the baryonic RPV coupling to
quarks. In this case l00

ijk
= l00

3DD and each index reflects the squark or quark generation of the
process, two of which are down-type quarks. Two possible choices of hadronic RPV coupling
scenarios are studied: et ! qq0 through the coupling l00

312, and et ! bq0 through the coupling
l00

323. The couplings considered are assumed to be large enough such that the resulting decays
are prompt. These two models are schematically depicted in Fig. 1.
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Figure 1: Diagrams for the benchmark models used in this analysis: pair production of top
squarks decaying into qq0 via the RPV coupling l00

312 (left), and bq0 via the RPV coupling l00
323

(right).

Searches foret ! qq0 via RPV decays have been performed at CERN by the ALEPH experiment
at LEP [6], which excluded met < 80 GeV at 95% confidence level (CL), and subsequently by
the CDF experiment [7] at the Fermilab Tevatron, which extended the limit to met < 100 GeV.
Similar searches have been performed at the CERN LHC by both the CMS and ATLAS experi-
ments at center-of-mass energies

p
s = 7, 8, and 13 TeV; CMS [8] excluded 200 < met < 350 GeV

at
p

s = 8 TeV, while the ATLAS exclusion [9] is 100 < met < 410 GeV at
p

s = 13 TeV. For
the et ! bq0 scenario, mass exclusion limits at

p
s = 8 TeV have been reported by CMS [8] of

+ countless other scenarios…
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Figure 1: Diagrams for the benchmark models used in this analysis: pair production of top
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Searches foret ! qq0 via RPV decays have been performed at CERN by the ALEPH experiment
at LEP [6], which excluded met < 80 GeV at 95% confidence level (CL), and subsequently by
the CDF experiment [7] at the Fermilab Tevatron, which extended the limit to met < 100 GeV.
Similar searches have been performed at the CERN LHC by both the CMS and ATLAS experi-
ments at center-of-mass energies

p
s = 7, 8, and 13 TeV; CMS [8] excluded 200 < met < 350 GeV

at
p

s = 8 TeV, while the ATLAS exclusion [9] is 100 < met < 410 GeV at
p

s = 13 TeV. For
the et ! bq0 scenario, mass exclusion limits at

p
s = 8 TeV have been reported by CMS [8] of

(Can we find it if we don’t know what we’re looking for??)

+ countless other scenarios…



Boosted new physics

NP itself could be highly boosted as well, e.g.

Many opportunities for boosted jet substructure at the LHC!

ATLAS 1904.12679

1

1 Introduction
New particles that decay into quarks and gluons and produce fully hadronic signatures are
predicted in many models of physics beyond the standard model (SM) [1–3]. For instance,
the violation of baryon number in certain supersymmetric (SUSY) models leads to colored
superpartners producing fully hadronic final states [4]. In this paper, we report on a generic
search for pair-produced resonances decaying to two light quarks (qq0) or one light quark and
one bottom quark (bq0).

Minimal SUSY models introduce R-parity, associated with a Z2 symmetry group called R sym-
metry, to forbid terms in the SUSY potential that naturally lead to the violation of baryon or
lepton numbers [5]. After SUSY breaking, R-parity violating Yukawa interactions of the form

lijkLiLjE
c

k
, l0

ijk
LiQjD

c

k
, l00

ijk
U

c

i
D

c

j
D

c

k
, (1)

can appear in the Lagrangian, where l, l0, l00 are coupling constants, and i, j, k are quark and
lepton generation indices following the summation convention, while c denotes charge con-
jugation. The SU(2) doublet superfields of the lepton and quark are denoted by Li and Qi,
respectively, while the Ei, Ui and, Dj represent the SU(2) singlet superfields of the lepton, up-
and down-type quarks, respectively. The first and third terms in Eq. (1) are antisymmetric in
{i, j} and {j, k}, respectively. The trilinear couplings l00

ijk
permit vertices of sfermions inter-

acting with two fermions, and in baryonic R-parity-violating (RPV) models, the only nonzero
couplings in Eq. (1) are l00

ijk
, which produce interactions of squarks with two quarks.

We consider pair production of top squarks (et) as a benchmark model, assuming the et is the
lightest of the colored SUSY partners and is allowed to decay via the baryonic RPV coupling to
quarks. In this case l00

ijk
= l00

3DD and each index reflects the squark or quark generation of the
process, two of which are down-type quarks. Two possible choices of hadronic RPV coupling
scenarios are studied: et ! qq0 through the coupling l00

312, and et ! bq0 through the coupling
l00

323. The couplings considered are assumed to be large enough such that the resulting decays
are prompt. These two models are schematically depicted in Fig. 1.

t~

λ312
''

t~ q

q'

q'

qp

p

_

_

* t~

323
''

t~ b

q'

q'

bp

p

_

_

*

Figure 1: Diagrams for the benchmark models used in this analysis: pair production of top
squarks decaying into qq0 via the RPV coupling l00

312 (left), and bq0 via the RPV coupling l00
323

(right).

Searches foret ! qq0 via RPV decays have been performed at CERN by the ALEPH experiment
at LEP [6], which excluded met < 80 GeV at 95% confidence level (CL), and subsequently by
the CDF experiment [7] at the Fermilab Tevatron, which extended the limit to met < 100 GeV.
Similar searches have been performed at the CERN LHC by both the CMS and ATLAS experi-
ments at center-of-mass energies

p
s = 7, 8, and 13 TeV; CMS [8] excluded 200 < met < 350 GeV

at
p

s = 8 TeV, while the ATLAS exclusion [9] is 100 < met < 410 GeV at
p

s = 13 TeV. For
the et ! bq0 scenario, mass exclusion limits at

p
s = 8 TeV have been reported by CMS [8] of

(Can we find it if we don’t know what we’re looking for??)

+ countless other scenarios…



Purpose of this talk

Motivation

Overview / Setting the Stage 

Inspiration



Where is the new physics????



Where is the new physics????

Countless searches for new physics beyond the SM. 



Where is the new physics????

Countless searches for new physics beyond the SM. 

So far no concrete evidence, only lower limits on the NP scale. 



Where is the new physics????

Countless searches for new physics beyond the SM. 

With stronger limits, boosted jet substructure becomes 
increasingly crucial.

So far no concrete evidence, only lower limits on the NP scale. 



Example: stop searches

boosted tops

8 8 Event selection and search regions
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Figure 2: Efficiency of the top quark tagger as a function of generator-level top quark pT for
the monojet (red boxes), dijet (magenta triangles), and trijet (green upside-down triangles) cat-
egories and for their combination (blue circles), as determined using T2tt signal events with a
top squark mass of 850 GeV and an LSP mass of 100 GeV. The vertical bars indicate the statisti-
cal uncertainties.

for the monojet and dijet categories, rather than strictly AK4 jets, and through implementation
of the random forest tree for the trijet category. These improvements provide a factor of two
reduction in the top quark misidentification rate while maintaining a similar efficiency.

8 Event selection and search regions
Our study is an inclusive search for events containing p

miss
T and reconstructed top quarks. The

selection criteria are intended, in general, to be nonrestrictive, while still providing high trigger
efficiency and sensitivity to a wide variety of new-physics scenarios. All events must satisfy
filters designed to remove detector- and beam-related noise. The events are subjected to the
lepton, isolated-track, and charged-hadron vetoes of Section 5. To improve the rejection of
background, the two tight AK4 jets with highest pT must have pT > 50 GeV. Events are re-
quired to have Nj � 4, Nb � 1, Nt � 1, p

miss
T > 250 GeV, and HT > 300 GeV.

The QCD multijet background mostly arises when the pT of one of the highest pT jets is under-
measured, causing ~pmiss

T to be aligned with that jet. This undermeasurement can occur because
of jet misreconstruction or, in the case of semileptonic b or c quark decays, an undetected neu-
trino. To reduce this background, requirements are placed on the azimuthal angle between
~pmiss

T and the three loose AK4 jets with highest pT, denoted j1, j2, and j3 in order of decreas-
ing pT. Specifically, we require Df(~pmiss

T , j1) > 0.5, Df(~pmiss
T , j2) > 0.5, and Df(~pmiss

T , j3) > 0.3.

The mT2 variable [20–22] is used to reduce background from tt events. This variable is designed
to provide an estimate of the transverse mass of pair-produced heavy objects that decay to both
visible and undetected particles. It has a kinematic upper limit at the mass of the heavy object
undergoing decay. Thus the upper limit for SM tt events is mt, while the upper limit for TeV-
scale squarks and gluinos is much larger. If there are two tagged top quarks in an event, mT2 is
calculated using the pair of tagged top quarks and ~pmiss

T . If there are more than two tagged top
quarks, we compute mT2 for all combinations and choose the combination with the smallest
mT2. If there is only one tagged top quark, we construct a proxy for the other top quark using

(CMS 1710.11188)
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for the monojet and dijet categories, rather than strictly AK4 jets, and through implementation
of the random forest tree for the trijet category. These improvements provide a factor of two
reduction in the top quark misidentification rate while maintaining a similar efficiency.

8 Event selection and search regions
Our study is an inclusive search for events containing p

miss
T and reconstructed top quarks. The

selection criteria are intended, in general, to be nonrestrictive, while still providing high trigger
efficiency and sensitivity to a wide variety of new-physics scenarios. All events must satisfy
filters designed to remove detector- and beam-related noise. The events are subjected to the
lepton, isolated-track, and charged-hadron vetoes of Section 5. To improve the rejection of
background, the two tight AK4 jets with highest pT must have pT > 50 GeV. Events are re-
quired to have Nj � 4, Nb � 1, Nt � 1, p

miss
T > 250 GeV, and HT > 300 GeV.

The QCD multijet background mostly arises when the pT of one of the highest pT jets is under-
measured, causing ~pmiss

T to be aligned with that jet. This undermeasurement can occur because
of jet misreconstruction or, in the case of semileptonic b or c quark decays, an undetected neu-
trino. To reduce this background, requirements are placed on the azimuthal angle between
~pmiss

T and the three loose AK4 jets with highest pT, denoted j1, j2, and j3 in order of decreas-
ing pT. Specifically, we require Df(~pmiss

T , j1) > 0.5, Df(~pmiss
T , j2) > 0.5, and Df(~pmiss

T , j3) > 0.3.

The mT2 variable [20–22] is used to reduce background from tt events. This variable is designed
to provide an estimate of the transverse mass of pair-produced heavy objects that decay to both
visible and undetected particles. It has a kinematic upper limit at the mass of the heavy object
undergoing decay. Thus the upper limit for SM tt events is mt, while the upper limit for TeV-
scale squarks and gluinos is much larger. If there are two tagged top quarks in an event, mT2 is
calculated using the pair of tagged top quarks and ~pmiss

T . If there are more than two tagged top
quarks, we compute mT2 for all combinations and choose the combination with the smallest
mT2. If there is only one tagged top quark, we construct a proxy for the other top quark using

AK8 jets
mSD∈(105,210), τ32<0.65

Search relies heavily on a (not very sophisticated) boosted top tagger.

(CMS 1710.11188)
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T to be aligned with that jet. This undermeasurement can occur because
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The mT2 variable [20–22] is used to reduce background from tt events. This variable is designed
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T . If there are more than two tagged top
quarks, we compute mT2 for all combinations and choose the combination with the smallest
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(CMS 1710.11188)

How would reach improve with state-of-the-art tagger?
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Figure 11: Observed and expected 95% CL upper limits on the signal cross section as a function
of met. The branching fraction to quarks is assumed to be 100%. The boosted analysis probes
80  met < 400 GeV, while the resolved analysis searches for met � 400 GeV. Left: limits using
the inclusive selection for et ! qq0 assuming the RPV coupling l00

312. Right: limits using the
b-tagged selection for et ! bq0 assuming the RPV coupling l00

323. The dashed pink line shows
the NLO+NLL theoretical prediction for top squark pair production [40, 41].

l00
323 couplings, assuming 100% branching fractions toet ! qq0 oret ! bq0, respectively. Upper

limits are set at 95% confidence level on the pair production cross section of top squarks as a
function of the top squark mass. We exclude top squark masses with the l00

312 coupling from 80
to 520 GeV. For the l00

323 coupling, the boosted search excludes masses from 80 to 270 and from
285 to 340 GeV; and the resolved search excludes masses from 400 to 525 GeV. These results
probe a wider range of masses than previously explored at the LHC, and extend the top squark
mass limits in theet ! qq0 scenario.
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Table 1: Summary of the signal selection criteria for the boosted search (second column) and
resolved search (third column). The criteria are shown for the inclusive selection and the b-
tagged selection.

Selection Boosted search Resolved search
60 < m < 450 GeV M > 350 GeV

(80  met < 400 GeV) (met � 400 GeV)
Inclusive AK8 jets AK4 jets
and jet pT > 150 GeV jet pT > 80 GeV
b-tagged jet |h| < 2.5 jet |h| < 2.5

Number of jets � 2 Number of jets � 4
H

AK8
T > 900 GeV H

AK4
T > 900 GeV

masym < 0.1 Masym < 0.1
t21 < 0.45 Dhdijet < 1.0
t32 > 0.57 D > 200 GeV
Dh < 1.5

b-tagged two loose b-tagged jets two loose b-tagged jets

hadronically decaying top quarks, respectively. Jets from the signal events would be predomi-
nantly produced with similar h, compared to the widely spread QCD multijet production, and
thus we require events to have an absolute value of the difference in h between the two jets:
Dh = |hj1 � hj2| < 1.5. For the b-tagged selection, both jets are required to satisfy the loose
b tagging criteria described in Section 4. All the selection criteria are summarized in Table 1
(second column), and are found to be optimal for the range of masses considered in this search.
The discriminating power of each of these kinematic variables is illustrated in Fig. 2 where nor-
malized distributions between data, different simulated background components, and selected
simulated signal samples are presented.

5.2 Signal efficiency

Figure 3 (left) shows the mass distributions for simulated signals after the inclusive selection.
Similar signal mass shapes are found when applying the b-tagged selection. Additionally, the
signal efficiency for the boosted search is reported in Fig. 3 (right) for both the inclusive and b-
tagged selections. The fraction ofet ! qq0 signal events remaining after applying the inclusive
selection, relative to the total number of events generated, is 0.003% for met = 80 GeV, increases
to 0.106% for met = 180 GeV, and drops again to 0.055% for met = 400 GeV because of the de-
crease in the production of top squarks with large Lorentz boosts at higher masses. Although
the fraction of boosted resonances is higher for met . 170 GeV, the HT and pT trigger require-
ments have a considerable impact on the event selection and are the main source of the signal
efficiency loss. The low signal selection efficiencies for boosted resonances are compensated by
the large signal cross sections for low-mass top squarks [40, 41]. The b-tagged selection presents
a similar pattern, where the fraction of remaining events foret ! bq0 is 0.0009%, 0.0350%, and
0.0134% for the resonance masses met = 80, 200, and 400 GeV, respectively.

5.3 Background estimate

After all the selection criteria are applied, the dominant remaining SM background is QCD mul-
tijet production. Subdominant resonant backgrounds are estimated from simulation and they
include tt+jets, W!q0q+jets, Z!qq+jets, and diboson (WW, ZZ, WZ) production. The nor-
malization of tt+jets, the largest resonant background, is assessed in a control region enriched
in tt events by requiring t32 < 0.57. This criterion aims to remove one- or two-prong jets, thus



Example: squark RPV16

[GeV]
t
~m

210 310

) 
[p

b]
 

t~ t~
→

(p
p 

σ

3−10

2−10

1−10

1

10

210

310

95% CL upper limits
Observed
Median expected
68% expected
95% expected
Top squark pair production

)312"λqq' (→t
~

selectionInclusive

search
Boosted

search
Resolved

(13 TeV)-135.9 fb

CMS

Figure 11: Observed and expected 95% CL upper limits on the signal cross section as a function
of met. The branching fraction to quarks is assumed to be 100%. The boosted analysis probes
80  met < 400 GeV, while the resolved analysis searches for met � 400 GeV. Left: limits using
the inclusive selection for et ! qq0 assuming the RPV coupling l00

312. Right: limits using the
b-tagged selection for et ! bq0 assuming the RPV coupling l00

323. The dashed pink line shows
the NLO+NLL theoretical prediction for top squark pair production [40, 41].

l00
323 couplings, assuming 100% branching fractions toet ! qq0 oret ! bq0, respectively. Upper

limits are set at 95% confidence level on the pair production cross section of top squarks as a
function of the top squark mass. We exclude top squark masses with the l00

312 coupling from 80
to 520 GeV. For the l00

323 coupling, the boosted search excludes masses from 80 to 270 and from
285 to 340 GeV; and the resolved search excludes masses from 400 to 525 GeV. These results
probe a wider range of masses than previously explored at the LHC, and extend the top squark
mass limits in theet ! qq0 scenario.
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Table 1: Summary of the signal selection criteria for the boosted search (second column) and
resolved search (third column). The criteria are shown for the inclusive selection and the b-
tagged selection.

Selection Boosted search Resolved search
60 < m < 450 GeV M > 350 GeV

(80  met < 400 GeV) (met � 400 GeV)
Inclusive AK8 jets AK4 jets
and jet pT > 150 GeV jet pT > 80 GeV
b-tagged jet |h| < 2.5 jet |h| < 2.5

Number of jets � 2 Number of jets � 4
H

AK8
T > 900 GeV H

AK4
T > 900 GeV

masym < 0.1 Masym < 0.1
t21 < 0.45 Dhdijet < 1.0
t32 > 0.57 D > 200 GeV
Dh < 1.5

b-tagged two loose b-tagged jets two loose b-tagged jets

hadronically decaying top quarks, respectively. Jets from the signal events would be predomi-
nantly produced with similar h, compared to the widely spread QCD multijet production, and
thus we require events to have an absolute value of the difference in h between the two jets:
Dh = |hj1 � hj2| < 1.5. For the b-tagged selection, both jets are required to satisfy the loose
b tagging criteria described in Section 4. All the selection criteria are summarized in Table 1
(second column), and are found to be optimal for the range of masses considered in this search.
The discriminating power of each of these kinematic variables is illustrated in Fig. 2 where nor-
malized distributions between data, different simulated background components, and selected
simulated signal samples are presented.

5.2 Signal efficiency

Figure 3 (left) shows the mass distributions for simulated signals after the inclusive selection.
Similar signal mass shapes are found when applying the b-tagged selection. Additionally, the
signal efficiency for the boosted search is reported in Fig. 3 (right) for both the inclusive and b-
tagged selections. The fraction ofet ! qq0 signal events remaining after applying the inclusive
selection, relative to the total number of events generated, is 0.003% for met = 80 GeV, increases
to 0.106% for met = 180 GeV, and drops again to 0.055% for met = 400 GeV because of the de-
crease in the production of top squarks with large Lorentz boosts at higher masses. Although
the fraction of boosted resonances is higher for met . 170 GeV, the HT and pT trigger require-
ments have a considerable impact on the event selection and are the main source of the signal
efficiency loss. The low signal selection efficiencies for boosted resonances are compensated by
the large signal cross sections for low-mass top squarks [40, 41]. The b-tagged selection presents
a similar pattern, where the fraction of remaining events foret ! bq0 is 0.0009%, 0.0350%, and
0.0134% for the resonance masses met = 80, 200, and 400 GeV, respectively.

5.3 Background estimate

After all the selection criteria are applied, the dominant remaining SM background is QCD mul-
tijet production. Subdominant resonant backgrounds are estimated from simulation and they
include tt+jets, W!q0q+jets, Z!qq+jets, and diboson (WW, ZZ, WZ) production. The nor-
malization of tt+jets, the largest resonant background, is assessed in a control region enriched
in tt events by requiring t32 < 0.57. This criterion aims to remove one- or two-prong jets, thus

Relatively simple 2-prong substructure tagger…
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l00
323 couplings, assuming 100% branching fractions toet ! qq0 oret ! bq0, respectively. Upper

limits are set at 95% confidence level on the pair production cross section of top squarks as a
function of the top squark mass. We exclude top squark masses with the l00

312 coupling from 80
to 520 GeV. For the l00

323 coupling, the boosted search excludes masses from 80 to 270 and from
285 to 340 GeV; and the resolved search excludes masses from 400 to 525 GeV. These results
probe a wider range of masses than previously explored at the LHC, and extend the top squark
mass limits in theet ! qq0 scenario.
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Table 1: Summary of the signal selection criteria for the boosted search (second column) and
resolved search (third column). The criteria are shown for the inclusive selection and the b-
tagged selection.

Selection Boosted search Resolved search
60 < m < 450 GeV M > 350 GeV

(80  met < 400 GeV) (met � 400 GeV)
Inclusive AK8 jets AK4 jets
and jet pT > 150 GeV jet pT > 80 GeV
b-tagged jet |h| < 2.5 jet |h| < 2.5

Number of jets � 2 Number of jets � 4
H

AK8
T > 900 GeV H

AK4
T > 900 GeV

masym < 0.1 Masym < 0.1
t21 < 0.45 Dhdijet < 1.0
t32 > 0.57 D > 200 GeV
Dh < 1.5

b-tagged two loose b-tagged jets two loose b-tagged jets

hadronically decaying top quarks, respectively. Jets from the signal events would be predomi-
nantly produced with similar h, compared to the widely spread QCD multijet production, and
thus we require events to have an absolute value of the difference in h between the two jets:
Dh = |hj1 � hj2| < 1.5. For the b-tagged selection, both jets are required to satisfy the loose
b tagging criteria described in Section 4. All the selection criteria are summarized in Table 1
(second column), and are found to be optimal for the range of masses considered in this search.
The discriminating power of each of these kinematic variables is illustrated in Fig. 2 where nor-
malized distributions between data, different simulated background components, and selected
simulated signal samples are presented.

5.2 Signal efficiency

Figure 3 (left) shows the mass distributions for simulated signals after the inclusive selection.
Similar signal mass shapes are found when applying the b-tagged selection. Additionally, the
signal efficiency for the boosted search is reported in Fig. 3 (right) for both the inclusive and b-
tagged selections. The fraction ofet ! qq0 signal events remaining after applying the inclusive
selection, relative to the total number of events generated, is 0.003% for met = 80 GeV, increases
to 0.106% for met = 180 GeV, and drops again to 0.055% for met = 400 GeV because of the de-
crease in the production of top squarks with large Lorentz boosts at higher masses. Although
the fraction of boosted resonances is higher for met . 170 GeV, the HT and pT trigger require-
ments have a considerable impact on the event selection and are the main source of the signal
efficiency loss. The low signal selection efficiencies for boosted resonances are compensated by
the large signal cross sections for low-mass top squarks [40, 41]. The b-tagged selection presents
a similar pattern, where the fraction of remaining events foret ! bq0 is 0.0009%, 0.0350%, and
0.0134% for the resonance masses met = 80, 200, and 400 GeV, respectively.

5.3 Background estimate

After all the selection criteria are applied, the dominant remaining SM background is QCD mul-
tijet production. Subdominant resonant backgrounds are estimated from simulation and they
include tt+jets, W!q0q+jets, Z!qq+jets, and diboson (WW, ZZ, WZ) production. The nor-
malization of tt+jets, the largest resonant background, is assessed in a control region enriched
in tt events by requiring t32 < 0.57. This criterion aims to remove one- or two-prong jets, thus

Relatively simple 2-prong substructure tagger…

How would reach improve with state-of-the-art tagger?
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Figure 4: The mass distribution of (a) V-boson jets, (b) Higgs-boson jets, (c) top-quark jets and (d) background jets
are shown before and after the final DNN VLQ boosted-object tagging. Signal (V-boson, Higgs-boson, top-quark)
jets are defined by matching the vRC jet to the corresponding object at generator level. The distributions are made
by merging all simulated VLQ samples. Background jets are taken from simulated multi-jet events. For signal
jets, only the impact of the correct tag is shown, while for background jets the impact of each boosted-object tag is
shown. All distributions are normalized to unit integral.
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How do we maximize the discovery potential of this enormous dataset??
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In the early days of LHC, progress was 
relatively easy. 

Energy increase (8 TeV→13 TeV) and 
rapid luminosity gains led to huge gains in 
sensitivity.

Analyses did not need to be very 
sophisticated. 

Could go after many low-hanging fruits.



In the future, the status quo will mean much slower progress.  The 
data-taking rate will plateau, and no increases in energy are foreseen.

To maintain the rapid growth in sensitivity, we need new, more 
sophisticated analysis techniques. 

Also, with this enormous dataset, we need to make sure we haven’t 
overlooked any subtle and unexpected signals of new physics. 

We need new ideas for how to look for new physics in the data!
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Potential of Deep Learning
From

 tow
ardsdatascience.com

• High-level concepts from low-level inputs 

• Automated feature engineering

• Robust against overfitting 
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Key prerequisite to successful deep learning: 
large, complex, well-understood dataset.

Ability to cheaply generate realistic simulations 
also very beneficial for supervised ML.

The LHC is the perfect setting for 
deep learning!
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Deep Learning at BOOST

Jet substructure is a natural arena for deep learning!
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Deep Learning @ BOOST ‘18

• Deep Learning for Jet Tagging at CMS and ATLAS

• Recursive NNs for Jet Tagging

• Autoencoders

• Classification Without Labels

• Jet Topics

• JUNIPR

• Energy Flow Networks

• New observables from DL

Unsupervised 
deep learning

New ideas for 
jet tagging

Learning from 
deep learning
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H→bb vs. QCD

H→cc vs. QCD

~50% 

• 27 double-b tagger inputs  
• 8 properties of up to 50 charged PF   
• 2 properties of up to 5 SV
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For 2019 updates, see talks by H. Qu and S. Macaluso tomorrow
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Realized in data???
See ATLAS and CMS talks by Schramm and Narain later today



Beyond tagging: mass decorrelation

Raw tagger performance not the only consideration.

For robust background estimation, often need to ensure 
tagger does not bias the background mass distribution.

State of the art in mass decorrelation methods was presented 
by ATLAS for W-tagging at BOOST ’18 (ATL-PHYS-PUB-2018-014)
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the physics task at hand than full mass-decorrelation.

7.3 Combined metric

A combined metric, reflecting both classification performance and mass-decorrelation, is necessary to
assess the trade-o�s balanced by each of the mass-decorrelation procedures. A more complete picture of
the performance is found by plotting the two metrics together. Figure 11 shows the mass-decorrelation
(1/JSD) versus the background rejection (1/"rel

bkg) for tagger cuts at "rel
sig = 50%, in two pT bins. The x-axis

measures classification power and the y-axis measures mass-decorrelation, with larger values along each
indicating better performance. For any given task, a specific direction in the plane of Figure 11 will
correspond to the best trade-o�.

For each of the mass-decorrelated MVA taggers, several working points are evaluated, by scanning � for
the ANN tagger and ↵ for uBoost. For high values of � (& 10), the ANN method starts to saturate given
the chosen network configurations, training procedures, and datasets.
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Figure 11: Unified plot of the metrics for classification (background rejection, 1/"rel
bkg) and mass-decorrelation

(inverse Jensen-Shannon divergence‚ 1/JSD), for cuts corresponding to "rel
sig = 50%, in two pT bins. Greater

values along each axis indicate better performance. Standard classifiers are indicated with filled markers. Mass-
decorrelated classifiers are indicated with open markers, with parameter scans traced out by dashed lines. The
shaded grey band indicates the statistical limit on 1/JSD from the finite number of simulated jets.

The dashed line and shaded band at high 1/JSD indicate the statistical limit of the mass-decorrelation,
estimated using bootstrap sampling.

Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of
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Figure 11: Unified plot of the metrics for classification (background rejection, 1/"rel
bkg) and mass-decorrelation

(inverse Jensen-Shannon divergence‚ 1/JSD), for cuts corresponding to "rel
sig = 50%, in two pT bins. Greater

values along each axis indicate better performance. Standard classifiers are indicated with filled markers. Mass-
decorrelated classifiers are indicated with open markers, with parameter scans traced out by dashed lines. The
shaded grey band indicates the statistical limit on 1/JSD from the finite number of simulated jets.

The dashed line and shaded band at high 1/JSD indicate the statistical limit of the mass-decorrelation,
estimated using bootstrap sampling.

Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of
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the ANN tagger and ↵ for uBoost. For high values of � (& 10), the ANN method starts to saturate given
the chosen network configurations, training procedures, and datasets.
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Figure 11: Unified plot of the metrics for classification (background rejection, 1/"rel
bkg) and mass-decorrelation

(inverse Jensen-Shannon divergence‚ 1/JSD), for cuts corresponding to "rel
sig = 50%, in two pT bins. Greater

values along each axis indicate better performance. Standard classifiers are indicated with filled markers. Mass-
decorrelated classifiers are indicated with open markers, with parameter scans traced out by dashed lines. The
shaded grey band indicates the statistical limit on 1/JSD from the finite number of simulated jets.

The dashed line and shaded band at high 1/JSD indicate the statistical limit of the mass-decorrelation,
estimated using bootstrap sampling.

Figure 11 shows that for equal levels of mass-decorrelation, the (A)NN tagger generally provides the
greatest background rejection. The BDT-based MVA taggers have comparable performance to the NN-
based taggers for the standard variants, but the adversarial training mass-decorrelation method is seen to
perform better than the uBoost method for the chosen configurations. From Figure 11(b), the e�ect of
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Trade off between 
tagger performance and 

mass decorrelation.

Best performer was 
adversarial NN



Adversaries are notoriously tricky to train — saddle point optimization

Would be great if we could achieve the same performance but with a convex 
regularizer term

First idea: can we just use Pearson correlation coefficient?

Problem: this only measures linear correlations

Alternatives to adversaries
Work in progress with Gregor Kasieczka

y: NN prediction
m: mass

min
✓clf

max
✓adv

Lclf(y(✓clf))� �Ladv(y(✓clf),m; ✓adv)
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min
✓clf

Lclf(y(✓clf)) + �Creg(y(✓clf),m)
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Creg = R(y,m) /
X

i

yimi
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Distance (de)correlation 
Work in progress with Gregor Kasieczka

Promising idea: “distance correlation” (Szekely, Rizzo, Bakirov 2007; Szekely & Rizzo 2009)

Xij = |Xi �Xj |, Yij = |Yi � Yj |
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

dCov2(X,Y ) ⌘ tr X̂Ŷ
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X̂ = CXC, Ŷ = CY C
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• Zero iff X, Y are independent; positive otherwise!

• Computationally tractable!

• Doesn’t require binning!

Matrix of distances

Double-centering

Distance covariance



Distance (de)correlation 
Work in progress with Gregor Kasieczka

Comparable performance to 
DNN+adversary.

Much easier to train.



Beyond tagging: unsupervised ML

Jet tagging is a prime example of supervised machine learning. 
Perfect when you know what you’re looking for.

Increasing interest in applications of unsupervised ML to LHC.

• Learning without labels

• Learning directly from the data

• Anomaly detection

• Triggering



Classification WithOut Labels (CWoLa)
Dery et al 1702.00414, Cohen, Freytsis & Ostdiek 1706.09451, Metodiev, Nachman & Thaler 1708.02949, 
Komiske et al 1801.10158, Collins, Howe & Nachman 1805.02664, 1902.02634

Suppose we are given two mixtures of 
signal and background. 

If signal and background are drawn from 
the same distributions in each sample, 
then under certain mild assumptions, one 
can train a classifier to distinguish signal 
from background directly from the data.
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

from 1708.02949

P signal
1 = P signal

2
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P background
1 = P background

2
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CWoLa Hunting
Collins, Howe & Nachman 1805.02664, 1902.02634

CWoLa Hunting
19

Application to Bump Hunt

In signal region:
S = 522,
S/B = 0.64%

2σ

3.8σ

4.2σ

7σ

CWoLa Hunting
13

Application to Bump Hunt

In signal region:
S = 522,
S/B = 0.64%

2σ

J. Collins, BOOST ‘18

Can look for anomalies in the data without a detailed signal hypothesis in mind



Unsupervised anomaly detection with deep 
autoencoders

   Heimel et al 1808.08979;   Farina, Nakai & DS 1808.08992

Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino

2

An autoencoder maps an input into a “latent representation” and then 
attempts to reconstruct the original input from it.  

The encoding is lossy, so the decoding cannot be perfect. 

Latent layer

See also:  
Hajer et al “Novelty Detection Meets Collider Physics” 1807.10261  
Cerri et al “Variational Autoencoders for New Physics Mining at the Large Hadron Collider” 1811.10276



Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct

7

The algorithm works when trained on “real data”!  
(QCD + a small fraction of signal)

Can use reconstruction error as an anomaly threshold.



Bump hunt with deep autoencoder

Figure 10: Jet mass histograms for QCD background and 400 GeV RPV gluinos, normalized to their
LO cross sections, before (left) and after (right) a cut on CNN autoencoder loss that rejects a factor of
1000 of the QCD background.

on CNN loss that reduce the QCD background by a factor of 10 (blue), 100 (orange),

and 1000 (green). The jet mass distribution is remarkably stable as we cut harder on

CNN loss. This makes it the superior autoencoder for doing a bump hunt in jet mass

for jet masses above ⇠ 300 GeV.

To illustrate the possibilities of searching for new physics in this way, by first “clean-

ing” the QCD background using the CNN autoencoder and then doing a bump hunt in

jet mass, we include Fig. 10. These are the jet mass histograms for QCD background

and 400 GeV gluinos, now normalized to the LO gluino and QCD cross sections, before

(left) and after (right) a cut on CNN autoencoder loss that removes a factor of 1000 of

the QCD background. Importantly, we have trained to autoencoder on a mixed sample

containing the expected fraction of gluino jets, corresponding to a contamination frac-

tion of 10�3. This would be representative of the actual data, if it really contained these

gluinos. We see that the S/B achievable here is ⇡ 25%. As can be seen clearly from

the histograms, this is an impressive improvement on the S/B before the cut (i.e. just

from the raw jet mass histogram), which is only ⇡ 4%. One could plausibly discover

new physics this way!

5 Discussion

In this paper, we have shown how autoencoders – machine-learning algorithms that learn

how to compress and decompress a sample of inputs – are potentially powerful new tools

for performing open-ended searches for new physics at the LHC. While autoencoders

have many real-world applications to anomaly detection, they have up till now not been
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Can train directly on data that contains 400 GeV gluinos, 
use the AE to clean away “boring” SM events, 

and improve S/N by a lot. 

Before AE cut After AE cut

Could potentially discover new physics this way!



Come join us for the LHC Olympics 2020!



Conclusions/Outlook

Boosted jet substructure is a crucial ingredient in the search for NP.

Deep learning is an exciting new tool with enormous potential to enhance the 
sensitivity to jet substructure and NP in the HL-LHC era.

Boosted heavy resonance tagging is being greatly accelerated by deep learning, 
along with many other tasks. Important higher-order questions such as mass 
decorrelation are now being actively investigated.

Besides boosted tops, W/Z’s and Higgses, new physics itself could be highly 
boosted. Could NP be hiding in jet substructure? Can we find it if we don’t 
know what we’re looking for? 



Thanks for your attention!



HL-LHC projections

Can make simple yet accurate projections for growth of sensitivity with 
luminosity. Salam & Weiler http://collider-reach.web.cern.ch/collider-reach/

Assume future sensitivity set by

Assume future background negligible with comparable signal efficiency.

Nsig(Mfuture, Lfuture) = Nsig(Mnow, Lnow)
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M2
fparton(x = 2M/ECM )
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Distance correlation vs Pearson 
correlation

Distance correlation



Distance correlation vs Pearson 
correlation

Pearson correlation


