Sensible Deep Learning for 3D Data

Justin Solomon MIT EECS

But I want to learn about your geometry problems!

GDP @ MIT

GDP@MIT Home Team Publications Courses Contact

Pliī

Geometric Data Processing Group

Principal investigator: Prof. Justin Solomon Computer Science and Artificial Intelligence Laboratory (CSAIL) Massachusetts Institute of Technology (MIT)

http://gdp.csail.mit.edu

Welcome!

The MIT **Geometric Data Processing Group** studies geometric problems in computer graphics, computer vision, machine learning, and other disciplines.

Our team includes students and researchers spanning a variety of disciplines, from theoretical mathematics to applications in engineering and software development. We enthusiastically welcome collaborators and staff at all levels and encourage interested parties to contact us with ideas, challenging problems, and avenues for joint research.

News

New website

Affiliations: EECS, CSAIL, Metric Geometry & Gerrymandering Group, Center for Computational Engineering, MIT-IBM Watson AI Lab, Toyota-CSAIL Joint Research Center

Shape Analysis: Typical Tasks

How do you embed domains into one another efficiently and with low distortion?

Claici et al. "Isometry-Aware Preconditioning for Mesh Parameterization." SGP 2017, London. Li et al. "OptCuts: Joint Optimization of Surface Cuts and Parameterization." SIGGRAPH Asia 2018, Tokyo. Gehre et al. "Interactive Curve Constrained Functional Maps." SGP 2018, Paris.

Shape Analysis: Typical Tasks

How can we tile a shape with **simpler elements**?

Solomon, Vaxman, and Bommes. "Boundary Element Octahedral Fields in Volumes." TOG 2018. Zhang et al. "Spherical Harmonic Frames for Feature-Aligned Cross-Fields." Submitted.

Shape Analysis: Typical Tasks

$$I_{\Omega}^{\mathrm{TV}}(t) := \begin{cases} \min_{f \in L^{1}(\mathbb{R}^{n})} & \mathrm{TV}[f] \\ \text{subject to} & \int_{\mathbb{R}^{n}} f(x) \, dx = t \\ & 0 \leq f \leq \mathbb{1}_{\Omega} \end{cases}$$

How do we stabilize classical geometric measurements?

DeFord, Lavenant, Schutzman, and Solomon. "Total Variation Isoperimetric Profiles." SIAM SIAGA, to appear.

Today's Research Thread

(Deep) learning on geometric data

Typical Tasks

The Challenge

Typical Image-Based Learning

AlexNet

Krizhevsky, Sutskever, & Hinton: "ImageNet classification with deep convolutional neural networks"

https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-7baaaecccc96

3D Learning: What We Want to Avoid

Point Cloud Learning

Classification

Map point cloud to a label in \mathbb{R}^n

Segmentation Map each point to a label in \mathbb{R}^n

http://paradise.caltech.edu/~yli/software/pceditor.html

Input

Unordered set of points $\{(x_i, y_i, z_i)\}_{i=1}^N$

Challenges

- Point clouds are unordered and unstructured
- Cannot parameterize patches
- No convolution
- Need a means for points to interact

Some Recent Options

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas Stanford University Abstract PointNet++: Deep Hierarchical Feature Learning on Point cloud is an important type of **Point Sets in a Metric Space** structure. Due to its irregular format, mo transform such data to regular 3D voxel grid of images. This, however, renders data voluminous and causes issues. In this pape novel type of neural network that directly of Charles R. Qi Li Yi Hao Su Leonidas J. Guibas clouds, which well respects the permutation Stanford University points in the input. Our network, named vides a unified architecture for application. object classification, part segmentation, to Abstract parsing. Though simple, PointNet is high Point Convolutional Neural Networks by Extension Operators effective. Empirically, it shows strong p Few prior works study do par or even better than state of the art. direction. However, by d we provide analysis towards understanding the metric space points l network has learnt and why the network and generalizability to a Haggai Maron* Yaron Lipman Matan Atzmon* neural network that app respect to input perturbation and corruption Weizmann Institute of Science input point set. By explo local features with increa sets are usually sampled 1. Introduction performance for netwo learning layers to adapti show that our network In this paper we explore deep learnin, efficiently and robustly. capable of reasoning about 3D geometric have been obtained on c Restrictio

image grids or 3D voxels, in order to p 1 Introduction

point clouds or meshes. Typical convolution require highly regular input data formats,

sharing and other kernel optimizations. Since

or meshes are not in a regular format, m We are interested in analyzing g c

Figure 1: A new framework for applying convolution to functions defined over point clouds: First, a function over cloud (in this case the constant one) is *extended* to a continuous volumetric function over the ambient space; a continuous volumetric *convolution* is applied to this function (without any discretization or approximation); and the continuous volumetric *convolution* is applied to this function (without any discretization or approximation); and the continuous volumetric *convolution* is applied to the continuous volumetric function over the ambient space; a continuous volumetric *convolution* is applied to the continuous volumetric function over the continuous volumetric convolution (without any discretization or approximation); and the continuous volumetric convolution (without any discretization over the continuous volumetric convolution); and the continuous volumetric convolution (without any discretization over the continuous); and the continuous volumetric convolution (without any discretization over the continuous); and the continuous volumetric convolution (without any discretization over the continuous); and the continuous volumetric convolution (without any discretization over the continuous); and the continuous volumetric convolution (without any discretization over the continuous); and the continuous volumetric convolution (without any discretization over the continuous); and the continuous volumetric convolution (without any discretization over the continuous); and the continuous volumetric convolution (without any discretization over the continuous).

Remarkable First Step

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Qi, Su, Mo, & Guibas; CVPR 2017

PointNet architecture

DGCNN

Learning on point clouds

Desiderata

Order invariance

No natural order for list of points

- Captures global information
 Combine information over entire shape
- Leverages local neighborhoods
 Curvature, local features relevant
- Large receptive field

Some version of density independence

Introducing: EdgeConv

Concatenate two endpoints

- Feed-forward NN to transform
 High-dimensional point per edge
- Symmetric aggregation
 Back to center point

Dynamic Graph

- Stack EdgeConv layers
- Recompute KNN before each layer
- Notion of "nearby" changes each layer

Full Segmentation Pipeline

Segmentation

Evaluation

	Mean Class Accuracy	Overall Accuracy
3DShapeNets [Wu et al. 2015]	77.3	84.7
VoxNet [Maturana and Scherer 2015]	83.0	85.9
Subvolume [Qi et al. 2016]	86.0	89.2
VRN (SINGLE VIEW) [BROCK ET AL. 2016]	88.98	-
VRN (multiple views) [Brock et al. 2016]	91.33	-
ECC [Simonovsky and Komodakis 2017]	83.2	87.4
PointNet [Qi et al. 2017b]	86.0	89.2
PointNet++ [Qi et al. 2017c]	-	90.7
Kd-net [Klokov and Lempitsky 2017]	-	90.6
POINTCNN [LI ET AL. 2018A]	88.1	92.2
PCNN [Atzmon et al. 2018]	-	92.3
OURS (BASELINE)	88.9	91.7
Ours	90.2	92.9
Ours (2048 points)	90.7	93.5

Table 2. Classification results on ModelNet40.

Recent Extension

Deep Closest Point: Learning Representations for Point Cloud Registration

Yue Wang Massachusetts Institute of Technology 77 Massachusetts Ave, Cambridge, MA 02139

yuewangx@mit.edu

Abstract

Point cloud registration is a key problem for computer vision applied to robotics, medical imaging, and other applications. This problem involves finding a rigid transformation from one point cloud into another so that they align. Iterative Closest Point (ICP) and its variants provide simple and easily-implemented iterative methods for this task, but these algorithms can converge to spurious local optima. To address local optima and other difficulties in the ICP pipeline, we propose a learning-based method, titled Deep Closest Point (DCP), inspired by recent techniques in computer vision and natural language processing. Our model consists of three parts: a point cloud embedding network, an attention-based module combined with a pointer generation layer, to approximate combinatorial matching, and a differentiable singular value decomposition (SVD) layer to extract the final rigid transformation. We train our model end-to-end on the ModelNet40 dataset and show in several settings that it performs better than ICP, its variants (e.g.,

ICCV 2019, to appear K. Beyond providing a state-of-the-art regJustin M. Solomon Massachusetts Institute of Technology 77 Massachusetts Ave, Cambridge, MA 02139

jsolomon@mit.edu

Classical Iterative Closest Point

- Choose e.g. 1000 random points
- Match each to closest point on other scan
- Reject pairs with distance > k times median
 Minimize

$$E[R,t] := \sum ||Rp_i + t - q_i||^2$$

Iterate

"A method for registration of 3-D shapes." Besl and McKay, PAMI 1992.

Local Optima

Translation in xz plane **Rotation** about y

Slide courtesy N. Mitra

Our Approach

Choose closest points in feature space

Training data: Synthetically rotated shape pairs Features are self-supervised!

DGCNN learns features

Model	MSE(R)	RMSE(R)	$MAE(\mathbf{R})$	MSE(t)	RMSE(t)	MAE(t)
ICP	894.897339	29.914835	23.544817	0.084643	0.290935	0.248755
Go-ICP [53]	140.477325	11.852313	2.588463	0.000659	0.025665	0.007092
FGR [57]	87.661491	9.362772	1.999290	0.000194	0.013939	0.002839
PointNetLK [16]	227.870331	15.095374	4.225304	0.000487	0.022065	0.005404
DCP-v1 (ours)	6.480572	2.545697	1.505548	0.000003	0.001763	0.001451
DCP-v2 (ours)	1.307329	1.143385	0.770573	0.000003	0.001786	0.001195

Table 1. ModelNet40: Test on unseen point clouds

Model	$MSE(\mathbf{R})$	$RMSE(\mathbf{R})$	$MAE(\mathbf{R})$	MSE(t)	RMSE(t)	MAE(t)
ICP	892.601135	29.876431	23.626110	0.086005	0.293266	0.251916
Go-ICP [53]	192.258636	13.865736	2.914169	0.000491	0.022154	0.006219
FGR [57]	97.002747	9.848997	1.445460	0.000182	0.013503	0.002231
PointNetLK [16]	306.323975	17.502113	5.280545	0.000784	0.028007	0.007203
DCP-v1 (ours)	19.201385	4.381938	2.680408	0.000025	0.004950	0.003597
DCP-v2 (ours)	9.923701	3.150191	2.007210	0.000025	0.005039	0.003703

 Table 2. ModelNet40: Test on unseen categories

Model	MSE(R)	RMSE(R)	$MAE(\mathbf{R})$	MSE(t)	RMSE(t)	MAE(t)
ICP	882.564209	29.707983	23.557217	0.084537	0.290752	0.249092
Go-ICP [53]	131.182495	11.453493	2.534873	0.000531	0.023051	0.004192
FGR [57]	607.694885	24.651468	10.055918	0.011876	0.108977	0.027393
PointNetLK [16]	256.155548	16.004860	4.595617	0.000465	0.021558	0.005652
DCP-v1 (ours) DCP-v2 (ours)	6.926589 1.169384	2.631841 1.081380	1.515879 0.737479	0.000003 0.000002	0.001801 0.001500	0.001697 0.001053

Table 3. ModelNet40: Test on objects with Gaussian noise

Different Task

Deep Parametric Shape Predictions using Distance Fields

Dmitriy Smirnov¹, Matthew Fisher², Vladimir G. Kim², Richard Zhang², Justin Solomon¹

¹Massachusetts Institute of Technology, ²Adobe Research

Abstract

Many tasks in graphics and vision demand machinery for converting shapes into representations with sparse sets of parameters; these representations facilitate rendering, editing, and storage. When the source data is noisy or ambiguous, however, artists and engineers often manually construct such representations, a tedious and potentially time-consuming process. While advances in deep learning have been successfully applied to noisy geometric data, the task of generating parametric shapes has so far been difficult for these methods. Hence, we propose a new framework for predicting parametric shape primitives using deep learning. We use distance fields to transition between shape parameters like control points and input data on a raster grid. We demonstrate efficacy on 2D and 3D tasks, including font vectorization and surface abstraction.

1. Introduction

The creation, modification, and rendering of vector graphics and parametric shapes is a fundamental problem of interest to engineers, artists, animators, and designers. Such representations offer distinct advantages over other models. By expressing a shape as a collection of primitives, we are Grid structure is fundamentally built into convolution as a mechanism for information to travel between layers of a deep network. This structure is leveraged during training to optimize performance on a GPU. Recent deep learning pipelines that output vector shape primitives [40] have been significantly less successful than pipelines for analogous tasks on raster images or voxelized volumes.

A challenge when applying deep learning to parametric geometry is the combination of Eulerian and Lagrangian

representations. CNN in that they apply fixe Eulerian shape represe as values on a fixed g hand, use sparse sets express geometry. In points, this *Lagrangian* Navigating the transiti etry is a key step in an above, a task we consi

We propose a deep parametric shapes, add analytically computin each training iteration the Chamfer distance,

larity. Our metric can be computed efficiently and does not

High-Level Theme

Input data: Eulerian representation

Input data: Lagrangian representation

A Graceful Transition

$$\mathcal{L}_{\Psi}(d_A(\cdot), d_B(\cdot)) = \int_{S} \Psi[d_A(x), d_B(x)] \, dV(x)$$

Closed-form distances for Bézier curves, implicit primitives, and Boolean representations.

Generalizes:

- Chamfer loss
- Global alignment

Normal alignment

Bonus: More efficient!

Alignment objectives are easy to evaluate from a distance field.

Learning Pipeline

Interpolation

Self-Supervised Shape Abstraction

Image-based 3D abstraction

Forthcoming Work

Deep Sketch-Based Modeling of Man-Made Shapes

DMITRIY SMIRNOV, Massachusetts Institute of Technology MIKHAIL BESSMELTSEV, Université de Montréal JUSTIN SOLOMON, Massachusetts Institute of Technology

Fig. 1. Given a bitmap sketch of a man-made shape, our method automatically infers a complete *parametric* 3D model, ready to be edited, rendered, or converted to a mesh. Compared to conventional methods, our resolution-independent geometry representation allows us to faithfully reconstruct sharp features (wing and tail edges) as well as smooth regions. Results are shown on sketches from a test dataset. Sketches in this figure are upsampled from the actual images used as input to our method.

Sketch-based modeling aims to model 3D geometry using a concise and easy to create—but extremely ambiguous—input: artist sketches. Most conventional sketch-based modeling systems target smooth shapes and, to counter the ambiguity, put manually-designed priors on the 3D shape; they also typically require clean, vectorized input. Recent approaches attempt to learn those priors from data but often produce low-quality output. Focusing on piecewise-smooth man-made shapes, we address these issues by presenting a deep learning-based system to infer a complete man-made 3D shape from a single bitmap sketch. Given a sketch, our system infers a set of parametric surfaces that realize the drawing in 3D. To capture the piecewise smooth

ACM Reference Format:

Dmitriy Smirnov, Mikhail Bessmeltsev, and Justin Solomon. 2019. Deep Sketch-Based Modeling of Man-Made Shapes. *ACM Trans. Graph.* 0, 0, Article 0 (2019), 12 pages. https://doi.org/0000001.0000001_2

1 INTRODUCTION

Algorithmically interpreting natural sketches as well as humans do would make 3D modeling intuitive and accessible. This is the goal

Take-Away

Learning from 3D data requires specialized, carefully-designed structures.

Many open problems!

Sensible Deep Learning for 3D Data

Justin Solomon MIT EECS

