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Shape Analysis: Typical Tasks

4 )
Fiiilin s

How do you embed domains into one another
efficiently and with low distortion?

Claici et al. "lsometry-Aware Preconditioning for Mesh Parameterization." SGP 2017, London.
Li et al. “"OptCuts: Joint Optimization of Surface Cuts and Parameterization.” SIGGRAPH Asia 2018, Tokyo.
Gehre et al. “Interactive Curve Constrained Functional Maps.” SGP 2018, Paris.



Shape Analysis: Typical Tasks

How can we tile a shape with simpler elements?

Solomon, Vaxman, and Bommes. “"Boundary Element Octahedral Fields in Volumes.” TOG 2018.
Zhang et al. “Spherical Harmonic Frames for Feature-Aligned Cross-Fields.” Submitted.



Shape Analysis: Typical Tasks

IaV(t) = subject to  [g, f(z)dx =
1g

0< f<
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How do we stabilize classical geometric measurements?

DeFord, Lavenant, Schutzman, and Solomon.
“Total Variation Isoperimetric Profiles.” SIAM SIAGA, to appear.



Today’s Research Thread

(Deep) learning on geometric data




Typical Tasks

ﬁ “Bunny!”
Classification

— “Ears!”
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Segmentation



The Challenge




Typical Image-Based Learning
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Krizhevsky, Sutskever, & Hinton:
“ImageNet classification with deep convolutional neural networks”

https://towardsdatascience.com/the-w3h-of-alexnet-vggnet-resnet-and-inception-ybaaaeccccg6



3D Learning: What We Want to Avoid
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Point Cloud Learning

http://paradise.caltech.edu/~yli/software/pceditor.html

Classification
Map point cloud to a label in R"

Segmentation
Map each point to a label in R™
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Unordered set of points {(x;,v;, z;) }



Challenges

Point clouds are unordered and unstructured
Cannot parameterize patches

No convolution

Need a means for points to interact



ome Recent Options

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Charles R. Qi* Hao Su* Kaichun Mo
Stanford University

Leonidas J. Guibas

Abstract ; . : .
PointNet++: Deep Hierarchical Feature Learning on

Point Sets in a Metric Space

Point cloud is an important type of §
structure. Due to its irregular format, m
transform such data to regular 3D voxel grid
of images. This, however, renders data
voluminous and causes issues. In this pap
novel type of neural network that directly ¢
clouds, which well respects the permutatioi
points in the input. Qur network, named
vides a unified architecture for application
object classification, part segmentation, to Abstract
parsing. Though simple, PointNet is highi !
effective. Empirically, it shows strong p Point Convolutional Neural Networks by Extension Operators

CharlesR. Qi LiYi HaoSu Leonidas]J. Guibas
Stanford University

Few prior works study d

par or even better than state of the art.
we provide analysis towards understandin
network has learnt and why the network
respect to input perturbation and corruption

1. Introduction

In this paper we explore deep learnin
capable of reasoning about 3D geometric
point clouds or meshes. Typical convolution
require highly regular input data formats,

direction. However, by d
the metric space points Ii
and generalizability to ¢
neural network that apg
input point set. By expl
local features with increg
sets are usually sampled
performance for netwo
learning layers to adapti

show that our network (¢ s

efficiently and robustly. |
have been obtained on ¢

image grids or 3D voxels, in order to p 1 Introduction

sharing and other kernel optimizations. Sim

Matan Atzmon”*

Yaron Lipman

Haggai Maron*

Welzmann Institute of Science

Cornolution

Figure 1: A new framework for applying convolution to functions defined over point clouds: First, a function over
cloud (in this case the constant one) is extended to a continuous volumetric function over the ambient space; :

ar meches are not i1 a reonlar format Yve are interested in analyzing @ continuous volumetric convolution is applied to this function (without anv discretization or approximation):; and |



Remarkable First Step

Classification Network
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Segmentation Network

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
Qi, Su, Mo, & Guibas; CVPR 2017

PointNet architecture



DGCNN

Dynamic Graph CNN for Learning on Point Clouds

YUE WANG, Massachusetts Institute of Technology

YONGBIN SUN, Massachusetts Institute of Technology

ZIWEI LIU, uC Berkeley / ICSI

SANJAY E. SARMA, Massachusetts Institute of Technology
MICHAEL M. BRONSTEIN, Imperial College London / USI Lugano
JUSTIN M. SOLOMON, Massachusetts Institute of Technology

ACM Transactions on Graphics
to appear

At ift https://github.com/WangYueFt/dgcnn
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Desiderata

Order invariance

No natural order for list of points

Captures global information

Combine information over entire shape

Leverages local neighborhoods

Curvature, local features relevant

Large receptive field

Some version of density independence



Introducing: EdgeConv
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Feature per edge
Concatenate two endpoints

Feed-forward NN to transform
High-dimensional point per edge

Symmetric aggregation
Back to center point



Dynamic Graph

Stack EdgeConv layers
Recompute KNN before each layer
Notion of “nearby” changes each layer
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Full Segmentation Pipeline
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Evaluation

MEAN OVERALL
CLAss ACCURACY ACCURACY

3DSHAPENETS [WU ET AL. 2015] 77.3 84.7
VOXNET [MATURANA AND SCHERER 2015] 83.0 85.9
SUBVOLUME [QI ET AL. 2016] 86.0 89.2
VRN (SINGLE VIEW) [BROCK ET AL. 2016] 88.98 -

VRN (MULTIPLE VIEWS) [BROCK ET AL. 2016] 91.33 -

ECC [SimoNoVsKY AND Komopakis 2017] 83.2 87.4
POINTNET [Q1 ET AL. 2017B] 86.0 89.2
POINTNET++ [QI ET AL. 2017¢] - 90.7
KD-NET [KLOKOV AND LEMPITSKY 2017] - 90.6
POoINTCNN [L1 ET AL. 2018A] 88.1 92.2
PCNN [ATzMON ET AL. 2018] - 92.3
OURS (BASELINE) 88.9 91.7
OuRrs 90.2 92.9
OuRs (2048 POINTS) 90.7 93.5

Table 2. Classification results on ModelNet40.



Recent Extension

Deep Closest Point: Learning Representations for Point Cloud Registration

Yue Wang Justin M. Solomon
Massachusetts Institute of Technology Massachusetts Institute of Technology
77 Massachusetts Ave, Cambridge, MA 02139 77 Massachusetts Ave, Cambridge, MA 02139

ewa 1x @ [= . b3 omonEmat

Abstract

Point cloud registration is a key problem for computer Input

vision applied to robotics, medical imaging, and other ap-

plications. This problem involves finding a rigid transfor-

mation from one point cloud into another so that they align.

Iterative Closest Point (ICP) and its variants provide sim-

ple and easily-implemented iterative methods for this task, Go-ICP

but these algorithms can converge to spurious local optima.

To address local optima and other difficulties in the ICP

pipeline, we propose a learning-based method, titled Deep

Closest Point (DCP), inspired by recent techniques in com-

puter vision and natural language processing. Our model FGR =
consists of three parts: a point cloud embedding network,
an attention-based module combined with a pointer gener-
ation laver, to approximate combinatorial matching, and a
differentiable singular value decomposition (SVD) layer to
extract the final rigid transformation. We train our model
end-to-end on the ModelNetd0 dataset and show in several
settings that it performs better than ICP, its variants (e.g.,
id the recently-proposed learning-based

PointNetLK

.. Beyond providing a state-of-the-art reg

ICCV 2019, to appear

>, we evaluate the suitability of our learned DCP (ours)



Classical Iterative Closest Point

Choose e.g. 1000 random points
Match each to closest point on other scan
Reject pairs with distance > k times median
Minimize
E[R,t]:==) |[Rp;i+t— gl

i

Iterate

“"A method for registration of 3-D shapes.”
Besl and McKay, PAMI 1992.
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Our Approach

| DGCNN Transformer Pointer
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Choose closest points in feature space

Training data: Synthetically rotated shape pairs

DGCNN learns features



Model MSE(R) RMSE(R) MAE(R) MSE(f) RMSE(t) MAE(t)
ICP 894.897339 29.914835 23.544817 0.084643 0.290935 0.248755
Go-ICP [57] 140.477325 11.852313 2588463  0.000659 0.025665 0.007092
FGR [57] 87.661491 9.362772 1.999290 0.000194 0.013939 0.002839
PointNetLK [16] 227.870331 15.095374  4.225304  0.000487 0.022065 0.005404
DCP-v1 (ours) 6.480572 2.545697 1.505548  0.000003 0.001763 0.001451
DCP-v2 (ours) 1.307329 1.143385  0.770573  0.000003 0.001786 0.001195

Table 1. ModelNet40: Test on unseen point clouds

Input

0

DCP+ICP 4 ¢

Model MSE(R) RMSE(R) MAE(R) MSE(#) RMSE() MAE®)
ICP 892.601135 29.876431 23.626110 0.086005 0.293266 0.251916
Go-ICP [57] 192258636 13.865736 2.914169 0.000491 0.022154 0.006219
FGR [57] 97.002747  9.848997 1445460 0.000182 0.013503 0.002231
PointNetLK [16] 306323975 17502113 5280545 0.000784 0.028007 0.007203
DCP-vl (ours) 19201385 4381938  2.680408  0.000025 0.004950 0.003597
DCP-v2 (ours) 9923701  3.150191 2007210  0.000025 0.005039 0.003703
Table 2. ModelNet40: Test on unseen categories
Model MSE(R) RMSE(R) MAE(R) MSE®#) RMSE(t) MAE®)
ICP 882564209 29.707983 23557217 0.084537 0.290752 0.249092
Go-ICP [55] 131182495 11453493  2.534873  0.000531 0.023051 0.004192
FGR [37] 607.694885 24.651468 10.055918 0.011876 0.108977 0.027393
PointNetLK [16] 256155548 16.004860  4.595617 ~ 0.000465 0.021558 0.005652
DCP-vl (ours) ~ 6.926589 2631841 1515879  0.000003 0.001801 0.001697
DCP-v2 (ours) 1169384 1081380  0.737479  0.000002 0.001500 0.001053

Table 3. ModelNet40: Test on objects with Gaussian noise




Different Task

Deep Parametric Shape Predictions using Distance Fields

e “ . . ¢ . . - .9 . 9 . -
Dmitriy Smirnov', Matthew Fisher®, Vladimir G. Kim?, Richard Zhang?, Justin Solomon’

! Massachusetts Institute of Technology, 2Adobe Research

cacy en 2D and 3D tasks, including font vectorization and points, this Lagrangia

Abstract Grid structure is fundamentally built into convolution as a
mechanism for information to travel between layers of a
Many tasks in graphics and vision demand machinery for deep network. This structure is leveraged during training
converting shapes into representations with sparse sets of pa- to optimize performance on a GPU. Recent deep learning
rameters; these representations facilitate rendering, editing, pipelines that output vector shape primitives [-10] have been
and storage. When the source data is noisy or ambiguous, significantly less successful than pipelines for analogous
however, artists and engineers often manually construct such tasks on raster images or voxelized volumes.
representations, a tedious and potentially time-consuming A challenge when applying deep learning to parametric
process. While advances in deep learning have been success- geometry is the combination of Fulerian and Lasrangian
fully applied to noisy geometric data, the task of generating ;‘-cprc.t'.cnflaﬁmm_ CNI
parametric shapes has so far been difficult for these methods. in that they apply fixe C E
Hence, we propose a new framework for predicting paramet- Eulerian shape repres
ric shape primitives using deep learning. We use distance as values on a fixed
fields to transition between shape parameters like control hand, use sparse sets
points and input data on a raster grid. We demonstrate effi- express geometry. Ir }{

surface abstraction. Navigating the transiti
etry is a key step in a
above, a task we cons

1. Introduction We propose a dee g & K
| L

B oA iy

. . . . arametric <h: v 2%52 K

The creation, modification, and rendering of vector graph- parametric shapes, ad % Ve i’. ;
y oy <6

analytically computir
each training iteratior
the Chamfer distance,
larity. Our metric can be computed efficiently and does not

ics and parametric shapes is a fundamental problem of in-
terest to engineers, artists, animators, and designers. Such
representations offer distinct advantages over other models.
Bv exvorecsine a chame ag a collection of orlmitives we are




High-Level Theme

Input data: Input data:
Eulerian Lagrangian

representation representation



A Graceful Transition

Co(dal),dp(-)) = /S V[da(x), dp(x) dV(z)

Closed-form distances for Bézier curves, implicit
primitives, and Boolean representations.

Generalizes:
* Chamfer loss ]
* Global alignment More e‘ﬁ\

* Normal alignment

BonUS'-

c'\ent‘-

Alighment objectives are easy to
evaluate from a distance field.



Learning Pipeline
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Self-Supervised Shape Abstraction




Extremely sparse
representation

Image-based 3D abstraction



Forthcoming Wor

Deep Sketch-Based Modeling of Man-Made Shapes

DMITRIY SMIRNOV, Massachusetts Institute of Technology

MIKHAIL BESSMELTSEV, Université de Montréal

JUSTIN SOLOMON, Massachusetts Institute of Technology

Fig. 1. Given a bitmap sketch of a man-made shape, our method automatically infers a complete parametric 3D model, ready to be edited, rendered, or
converted to a mesh. Compared to conventional methods, our resolution-independent geometry representation allows us to faithfully reconstruct sharp
features (wing and tail edges) as well as smooth regions. Results are shown on sketches from a test dataset. Sketches in this figure are upsampled from the

actual images used as input to our method.

Sketch-based modeling aims to model 3D geometry using a concise and easy
to create—but extremely ambiguous—input: artist sketches. Most conven-
tional sketch-based modeling systems target smooth shapes and, to counter
the ambiguity, put manually-designed priors on the 3D shape; they also
typically require clean, vectorized input. Recent approaches attempt to learn
those priors from data but often produce low-quality output. Focusing on
piecewise-smooth man-made shapes, we address these issues by presenting
a deep learning-based system to infer a complete man-made 3D shape from
a single bitmap sketch. Given a sketch, our system infers a set of parametric

enrvfanas tHhat vrasBlRrs Pha dArasiranne 20 AT ‘T saindisens tha iasstarres crvaanth

ACM Reference Format:

Dmitriy Smirnov, Mikhail Bessmeltsev, and Justin Solomon. 2019. Deep
Sketch-Based Modeling of Man-Made Shapes. ACM Trans. Graph. 0, 0, Arti-
cle 0 ( 2019), 12 pages. https://doi.org/0000001.0000001_2

1 INTRODUCTION

Algorithmically interpreting natural sketches as well as humans do

would make 3D modeling intuitive and accessible. This is the goal



Take-Away

Learning from 3D data requires
specialized, carefully-designed
structures.

Many open problems!
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