Jet grooming through reinforcement learning
based on PRD 100, 014014, arXiv:1903.09644

Stefano Carrazza and Frédéric Dreyer

Università degli Studi di Milano and INFN Sezione di Milano

Acknowledgement: This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement number 740006.
Introduction
Boosted jets at the LHC

High energy collisions at the LHC ⇒ **boosted objects:**

- particles such as W, Z, H, t, ... are produced with $p_T^\text{jet} \gg m_{\text{jet}}$,
- hadronic **collimated decays** often reconstructed into **single jets**.

Jet drawings by G. Soyez
Boosted jets at the LHC

High energy collisions at the LHC ⇒ boosted objects:

- particles such as W, Z, H, t, ... are produced with $p_T^{\text{jet}} \gg m_{\text{jet}}$,
- hadronic collimated decays often reconstructed into single jets.

Problem: identify hard structure of a jet from radiation patterns.
(Jet from W, Z, H, t or QCD?)
Jet grooming techniques

How to identify hard structure of a jet?

- Look at the mass of the jet.
- Remove distortion due to QCD radiation and pileup.

Grooming goal ⇒ remove unassociated soft wide-angle radiation.
Jet grooming techniques

How to identify hard structure of a jet?

- Look at the mass of the jet.
- Remove distortion due to QCD radiation and pileup.

Grooming goal ⇒ remove unassociated soft wide-angle radiation.

Jet grooming algorithms:

- modified MassDrop Tagger
 Dasgupta et al., arXiv:1307.0007
- Soft Drop (SD)
 Larkoski et al., arXiv:1402.2657
- Recursive Soft Drop (RSD)
 Dreyer et al., arXiv:1804.03657
Cast jet as clustering tree with nodes $\mathcal{T}^{(i)}$ and children nodes a, b.

1. Define state of each node as $s = \{z, \Delta_{ab}\}$ where

 $z = \min(p_{t,a}, p_{t,b}) + p_{t,a} + p_{t,b}$,

 $\Delta_{2ab} = (y_a - y_b)^2 + (\phi_a - \phi_b)^2$

2. Evaluate policy (β, z_{cut} and R_0 are free parameters):

 $\pi_{\text{RSD}}(s) =
 \begin{cases}
 0 & \text{if } z > z_{\text{cut}} \left(R_0 \Delta_{ab} \right) \\
 1 & \text{else}
 \end{cases}$

3. If $\pi_{\text{RSD}}(s) = 1 \rightarrow$ remove softer branch and update jet tree,

4. If $\pi_{\text{RSD}}(s) = 0 \rightarrow$ stop recursion.
(Recursive) Soft Drop algorithm

1. Cast jet as clustering tree with nodes $\mathcal{T}^{(i)}$ and children nodes a, b.
2. Define state of each node as $s_t = \{z, \Delta_{ab}\}$ where

$$z = \frac{\min(p_{t,a}, p_{t,b})}{p_{t,a} + p_{t,b}}, \quad \Delta_{ab}^2 = (y_a - y_b)^2 + (\phi_a - \phi_b)^2$$
(Recursive) Soft Drop algorithm

1. Cast jet as clustering tree with nodes $\mathcal{T}^{(i)}$ and children nodes a, b.
2. Define state of each node as $s_t = \{z, \Delta_{ab}\}$ where
 \[
 z = \frac{\min(p_{t,a}, p_{t,b})}{p_{t,a} + p_{t,b}}, \quad \Delta_{ab}^2 = (y_a - y_b)^2 + (\phi_a - \phi_b)^2
 \]
3. Evaluate policy (β, z_{cut} and R_0 are free parameters):
 \[
 \pi_{RSD}(s_t) = \begin{cases}
 0 & \text{if } z > z_{cut} \left(\frac{\Delta_{ab}}{R_0} \right)^\beta \\
 1 & \text{else}
 \end{cases}
 \]
(Recursive) Soft Drop algorithm

1. Cast jet as clustering tree with nodes $\mathcal{T}^{(i)}$ and children nodes a, b.
2. Define state of each node as $s_t = \{z, \Delta_{ab}\}$ where
 \[
 z = \frac{\min(p_{t,a}, p_{t,b})}{p_{t,a} + p_{t,b}}, \quad \Delta_{ab}^2 = (y_a - y_b)^2 + (\phi_a - \phi_b)^2
 \]
3. Evaluate policy (β, z_{cut} and R_0 are free parameters):
 \[
 \pi_{\text{RSD}}(s_t) = \begin{cases}
 0 & \text{if } z > z_{\text{cut}} \left(\frac{\Delta_{ab}}{R_0}\right)^\beta \\
 1 & \text{else}
 \end{cases}
 \]
4. If $\pi_{\text{RSD}}(s_t) = 1 \rightarrow$ remove softer branch and update jet tree,
(Recursive) Soft Drop algorithm

1. Cast jet as clustering tree with nodes $\mathcal{T}^{(i)}$ and children nodes a, b.
2. Define state of each node as $s_t = \{z, \Delta_{ab}\}$ where
 \[z = \frac{\min(p_{t,a}, p_{t,b})}{p_{t,a} + p_{t,b}}, \quad \Delta_{ab}^2 = (y_a - y_b)^2 + (\phi_a - \phi_b)^2 \]
3. Evaluate policy (β, z_{cut} and R_0 are free parameters):
 \[\pi_{\text{RSD}}(s_t) = \begin{cases}
 0 & \text{if } z > z_{\text{cut}} \left(\frac{\Delta_{ab}}{R_0} \right)^\beta \\
 1 & \text{else} \end{cases} \]
4. If $\pi_{\text{RSD}}(s_t) = 1 \rightarrow$ remove softer branch and update jet tree,
5. If $\pi_{\text{RSD}}(s_t) = 0 \rightarrow$ stop recursion.
Goal of this project?

- Extend RSD jet grooming using **Deep Learning** techniques.
Our goal for this project

Goal of this project?

- Extend RSD jet grooming using Deep Learning techniques.

Why?

- improve m_{jet} resolution,
- verify model generalization and performance on different processes,
- provide a fast inference model.
Goal of this project?

- Extend RSD jet grooming using Deep Learning techniques.

Why?

- improve m_{jet} resolution,
- verify model generalization and performance on different processes,
- provide a fast inference model.

How?

- using Deep Reinforcement Learning (DRL) techniques.
A deep learning approach
Grooming a jet tree with DRL

Input data:

Generate jet events with Monte Carlo. Define a set of possible states in a five dimensional box:

\[s_t = \{z, \Delta_{ab}, \phi, m, k_t\} \]

Methodology:

Jet grooming is characterized by a policy and a sequential set of actions/cuts, so:

- Train a reinforcement learning agent which learns how to decide which action to take.
- Define an environment reward which motivates the agent to groom efficiently.
Choosing an DRL agent

Which agent?

Deep Q-Network \rightarrow off-policy and discrete action space.

A deep neural network maximizes the action-value quality function:

$$Q^*(s, a) = \max_{\pi} \mathbb{E} \left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots | s_t = s, a_t = a, \pi \right]$$
Choosing an DRL agent

Which agent?

Deep Q-Network \rightarrow off-policy and discrete action space.

A deep neural network maximizes the action-value quality function:

$$Q^*(s, a) = \max_{\pi} \mathbb{E} \left[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots | s_t = s, a_t = a, \pi \right]$$

A simple example:

Playing ATARI games with DRL from Minh et al., arXiv:1312.5602, Nature'15:
Grooming a jet tree with DRL

DRL requirements:

- **Environment definition?**

 build a simulation setup where the DQN is trained and validated
DRL requirements:

- **Environment definition?**

 build a simulation setup where the DQN is trained and validated

- **Reward definition?**

 translate the m_{jet} resolution into a game score
Grooming a jet tree with DRL

DRL requirements:

- **Environment definition?**
 build a simulation setup where the DQN is trained and validated

- **Reward definition?**
 translate the m_{jet} resolution into a game score

- **Hyperparameter tune?**
 obtain the best model for our specific problem
Grooming a jet tree with DRL

DRL requirements:

- **Environment definition?**

 build a simulation setup where the DQN is trained and validated

- **Reward definition?**

 translate the m_{jet} resolution into a game score

- **Hyperparameter tune?**

 obtain the best model for our specific problem

In practice we implement the DRL framework using:

- **Python ∈ (Keras-RL, TensorFlow, OpenAI Gym, hyperopt)**
- Public code available at https://github.com/JetsGame
Defining a jet grooming game:

Game score \Rightarrow reward function (next slides)
Defining a jet grooming game:

Game score \Rightarrow reward function (next slides)

Game environment:

1. Initialize list of all trees for training.
2. Each episode starts by randomly selecting a tree and adding its root to a priority queue (ordered in Δ_{ab}).
3. Each step removes first node from priority queue, then takes action on removal of soft branch based on s_t.
4. After action, update kinematics of parent nodes, add current children to priority queue, and evaluate reward.
5. Episode terminates once priority queue is empty.
We construct a reward function based on two components:

\[R(m, a_t, \Delta, z) = R_M(m) + \frac{1}{N_{SD}} R_{SD}(a_t, \Delta, z) \]

so the DQN agent is motivated to:

- improve jet mass resolution \(\Rightarrow \) increase \(R_M \),
- replicate Soft-Drop behavior \(\Rightarrow \) increase \(R_{SD} \).
We construct a reward function based on two components:

\[R(m, a_t, \Delta, z) = R_M(m) + \frac{1}{N_{SD}} R_{SD}(a_t, \Delta, z) \]

so the DQN agent is motivated to:

- improve jet mass resolution \(\Rightarrow\) increase \(R_M\),
- replicate Soft-Drop behavior \(\Rightarrow\) increase \(R_{SD}\).

The mass reward is defined using a Cauchy distribution:

\[R_M(m) = \frac{\Gamma^2}{\pi (|m - m_{\text{target}}|^2 + \Gamma^2)} \]
The **Soft-Drop** reward is defined as

\[
R_{SD}(a_t, \Delta, z) = a_t \min \left(1, e^{-\alpha_1 \ln(1/\Delta) + \beta_1 \ln(1/z)} \right) + (1 + a_t) \max \left(0, 1 - e^{-\alpha_2 \ln(1/\Delta) + \beta_2 \ln(z/1)} \right),
\]

so the DQN agent is motivated to:

- **remove** wide-angle soft radiation
- **keep** hard-collinear emissions
Adding a multi-level approach

What about background events?

Potential mass bias for background events ⇒ use multi-level training:

1. add to the training set signal and background samples
 ⇒ 500k W/QCD jets simulated with Pythia 8
Adding a multi-level approach

What about background events?

Potential mass bias for background events ⇒ use multi-level training:

1. add to the training set signal and background samples
 ⇒ 500k W/QCD jets simulated with Pythia 8

2. at each episode randomly select a signal or background jet.
 ⇒ adjust $R_M(m)$ accordingly to signal/background

$R_{bkg}(m) = m \Gamma_{bkg} \exp(-m \Gamma_{bkg})$
Adding a multi-level approach

What about background events?

Potential mass bias for background events ⇒ use multi-level training:

1. add to the training set signal and background samples
 ⇒ 500k W/QCD jets simulated with Pythia 8
2. at each episode randomly select a signal or background jet.
 ⇒ adjust $R_M(m)$ accordingly to signal/background

In the background case, the mass reward term is changed to:

$$R_{M \text{ bkg}}(m) = \frac{m}{\Gamma_{\text{bkg}}} \exp \left(-\frac{m}{\Gamma_{\text{bkg}}} \right)$$
Hyperparameter tune

Free parameters to be determined:

- **DQN architecture** \Rightarrow (layers, nodes, activations, ...)
- **Reward parameters** \Rightarrow $(\alpha_{1,2}, \beta_{1,2}, z_{1,2}, \Gamma)$
- **Learning parameters** \Rightarrow (optimizer, learning rate, ...)

How?
Use distributed asynchronous hyperparameter optimization \Rightarrow hyperopt.

1. Create a validation set with 50k signal (W) and background (QCD) jets.
2. Derive groomed jet mass distribution from validation set and determine:
 - window ($w_{\text{min}}, w_{\text{max}}$) containing 60% of signal distribution,
 - the median w_{med} in that interval.
3. Define f_{bkg} the fraction of groomed background sample ($w_{\text{min}}, w_{\text{max}}$):
 \[L = \frac{1}{5} |w_{\text{max}} - w_{\text{min}}| + |m_{\text{target}} - w_{\text{med}}| + 20 f_{\text{bkg}} \]
Free parameters to be determined:

- **DQN architecture** ⇒ \((\text{layers, nodes, activations,} \ldots)\)
- **Reward parameters** ⇒ \((\alpha_{1,2}, \beta_{1,2}, z_{1,2}, \Gamma)\)
- **Learning parameters** ⇒ \((\text{optimizer, learning rate,} \ldots)\)

How?

Use distributed asynchronous hyperparameter optimization ⇒ **hyperopt**.

1. Create a validation set with 50k signal \((W)\) and background \((\text{QCD})\) jets.
Hyperparameter tune

Free parameters to be determined:

- DQN architecture ⇒ \((\text{layers}, \text{nodes}, \text{activations}, \ldots)\)
- Reward parameters ⇒ \((\alpha_{1,2}, \beta_{1,2}, z_{1,2}, \Gamma)\)
- Learning parameters ⇒ \((\text{optimizer}, \text{learning rate}, \ldots)\)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1. Create a validation set with 50k signal (W) and background (QCD) jets.
2. Derive groomed jet mass distribution from validation set and determine:
Hyperparameter tune

Free parameters to be determined:

- **DQN architecture** ⇒ \((\text{layers, nodes, activations, ...})\)
- **Reward parameters** ⇒ \((\alpha_{1,2}, \beta_{1,2}, z_{1,2}, \Gamma)\)
- **Learning parameters** ⇒ \((\text{optimizer, learning rate, ...})\)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1. **Create a validation set** with 50k signal \((W)\) and background (QCD) jets.
2. **Derive groomed jet mass distribution** from validation set and determine:
 - window \((w_{\text{min}}, w_{\text{max}})\) containing 60% of signal distribution,
Hyperparameter tune

Free parameters to be determined:

- DQN architecture ⇒ \((\text{layers, nodes, activations, ...})\)
- Reward parameters ⇒ \((\alpha_{1,2}, \beta_{1,2}, z_{1,2}, \Gamma)\)
- Learning parameters ⇒ \((\text{optimizer, learning rate, ...})\)

How?

Use distributed asynchronous hyperparameter optimization ⇒ hyperopt.

1. Create a validation set with 50k signal \((W)\) and background (QCD) jets.
2. Derive groomed jet mass distribution from validation set and determine:
 - window \((w_{\text{min}}, w_{\text{max}})\) containing 60% of signal distribution,
 - the median \(w_{\text{med}}\) in that interval.
Hyperparameter tune

Free parameters to be determined:

- **DQN architecture** ⇒ \((\text{layers, nodes, activations, ...})\)
- **Reward parameters** ⇒ \((\alpha_{1,2}, \beta_{1,2}, z_{1,2}, \Gamma)\)
- **Learning parameters** ⇒ \((\text{optimizer, learning rate}, \ldots)\)

How?

Use distributed asynchronous hyperparameter optimization ⇒ \text{hyperopt}.

1. Create a validation set with 50k signal \((W)\) and background (QCD) jets.
2. Derive groomed jet mass distribution from validation set and determine:
 - window \((w_{\text{min}}, w_{\text{max}})\) containing 60% of signal distribution,
 - the median \(w_{\text{med}}\) in that interval.
3. Define \(f_{\text{bkg}}\) the fraction of groomed background sample \((w_{\text{min}}, w_{\text{max}})\):

\[
\mathcal{L} = \frac{1}{5} |w_{\text{max}} - w_{\text{min}}| + |m_{\text{target}} - w_{\text{med}}| + 20 f_{\text{fkg}}
\]
Hyperparameter tune

Validation loss for 2000 models
Results
Optimal GroomRL model for W and top jets

Reward evolution during the training of the GroomRL for W bosons and top quarks:

- **improvement** during the first 300k epochs,
- **stability** after 300k epochs.

\[R(m, a_t, \Delta, z) \]

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_{target}</td>
<td>80.385 GeV or 173.2 GeV</td>
</tr>
<tr>
<td>s_t dimension</td>
<td>5</td>
</tr>
<tr>
<td>reward</td>
<td>Cauchy</td>
</tr>
<tr>
<td>Γ</td>
<td>2 GeV</td>
</tr>
<tr>
<td>$(\alpha_1, \beta_1, \ln z_1)$</td>
<td>(0.59, 0.18, -0.92)</td>
</tr>
<tr>
<td>$(\alpha_2, \beta_2, \ln z_2)$</td>
<td>(0.65, 0.33, -3.53)</td>
</tr>
<tr>
<td>$1/N_{\text{SD}}$</td>
<td>0.15</td>
</tr>
<tr>
<td>multi-level training</td>
<td>Yes</td>
</tr>
<tr>
<td>Γ_{bkg}</td>
<td>8 GeV</td>
</tr>
<tr>
<td>$1/N_{\text{bkg}}$</td>
<td>1.8 or 1.0</td>
</tr>
<tr>
<td>p_{bkg}</td>
<td>0.48 or 0.2</td>
</tr>
<tr>
<td>learning rate</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Dueling NN</td>
<td>Yes</td>
</tr>
<tr>
<td>Double DQN</td>
<td>No</td>
</tr>
<tr>
<td>Policy</td>
<td>Boltzmann</td>
</tr>
<tr>
<td>$N_{\text{epochs}}^{\text{max}}$</td>
<td>500K</td>
</tr>
<tr>
<td>Architecture</td>
<td>Dense</td>
</tr>
<tr>
<td>Dropout</td>
<td>0.05</td>
</tr>
<tr>
<td>Layers</td>
<td>10</td>
</tr>
<tr>
<td>Nodes</td>
<td>100</td>
</tr>
<tr>
<td>Optimizer</td>
<td>Adam</td>
</tr>
</tbody>
</table>

TABLE I: Final parameters for GroomRL, with the two values of m_{target} corresponding to the W and top mass.
GroomRL-W predictions vs n_{epochs}

$n_{\text{epochs}} = 500$

DRL training animation
DRL training animation

GroomRL-W predictions vs n_{epochs}

$n_{\text{epochs}} = 700$
GroomRL-W predictions vs n_{epochs}

$n_{\text{epochs}} = 1k$
DRL training animation

GroomRL-W predictions vs n_{epochs}

$n_{\text{epochs}} = 2k$
DRL training animation

GroomRL-W predictions vs n_{epochs}

$n_{\text{epochs}} = 5k$
GroomRL-W predictions vs n_{epochs}

$n_{\text{epochs}} = 10k$
DRL training animation

GroomRL-W predictions vs n_{epochs}

$n_{epochs} = 50k$
GroomRL-W predictions vs n_{epochs}

$n_{\text{epochs}} = 500k$
Optimal GroomRL model for W jets

GroomRL-W tested on QCD, W and Top jet data

<table>
<thead>
<tr>
<th></th>
<th>$w_{\text{max}} - w_{\text{min}}$ [GeV]</th>
<th>w_{med} [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>plain</td>
<td>44.65</td>
<td>104.64</td>
</tr>
<tr>
<td>GroomRL-W</td>
<td>10.70</td>
<td>80.09</td>
</tr>
<tr>
<td>GroomRL-Top</td>
<td>13.88</td>
<td>80.46</td>
</tr>
<tr>
<td>RSD</td>
<td>16.96</td>
<td>80.46</td>
</tr>
</tbody>
</table>

TABLE II: Size of the window containing 60% of the W mass spectrum, and median value on that interval.
Optimal GroomRL model for W jets

GroomRL-Top tested on QCD, W and Top jet data

<table>
<thead>
<tr>
<th></th>
<th>$w_{\text{max}} - w_{\text{min}}$ [GeV]</th>
<th>w_{med} [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>plain</td>
<td>44.65</td>
<td>104.64</td>
</tr>
<tr>
<td>GroomRL-W</td>
<td>10.70</td>
<td>80.09</td>
</tr>
<tr>
<td>GroomRL-Top</td>
<td>13.88</td>
<td>80.46</td>
</tr>
<tr>
<td>RSD</td>
<td>16.96</td>
<td>80.46</td>
</tr>
</tbody>
</table>

TABLE II: Size of the window containing 60% of the W mass spectrum, and median value on that interval.
Lund jet plane density

Inspecting \((\ln 1/\Delta_{ab}, \ln k_t)\) ⇒ soft and wide-angle radiation removed.
Deliverables and conclusion
Deliverables and conclusions

Deliverables

- GroomRL complete python framework available at:
 https://github.com/JetsGame/GroomRL
 (contains pre-trained W and top jet DQN models)

- libGroomRL a C++ library for jet grooming models inference:
 https://github.com/JetsGame/libGroomRL

- Datasets for top, W and QCD jets at:
 https://github.com/JetsGame/data

Conclusions

- Reinforcement learning can be applied to jet grooming successfully.
- Results are quantitatively similar to RSD with moderate improvement in mass resolution.
- Remarkable model generalization when changing underlying process without retraining.
Deliverables and conclusions

Deliverables

- GroomRL complete python framework available at:
 https://github.com/JetsGame/GroomRL
 (contains pre-trained W and top jet DQN models)
- libGroomRL a C++ library for jet grooming models inference:
 https://github.com/JetsGame/libGroomRL
- Datasets for top, W and QCD jets at:
 https://github.com/JetsGame/data

Conclusions

- Reinforcement learning can be applied to jet grooming successfully.
- Results are quantitatively similar to RSD with moderate improvement in mass resolution.
- Remarkable model generalization when changing underlying process without retraining.
Thank you!