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�2Overview

 I therefore believe it's true that with a suitable class 
of quantum machines you could imitate any quantum 

system, including the physical world. - Feynman
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� ! ff̄ , which still follows the Markov Chain of ampli-
tudes in Eq. (5). The core idea of the quantum algo-
rithm is to first rotate to a particle basis where there is
no mixing between fermion states (Appendix B). In this
superposition basis, emissions between states are uncor-
related. Sudakov factors can then be used to govern the
no emission probability o↵ of the uncorrelated fermions.
The bulk of the quantum circuitry will then be dedicated
to book-keeping, to encode the emission history and de-
cide which fermions/bosons radiate/split at a given step
✓ in the shower.

Figure 1 is the quantum circuit implementing the
quantum final state radiation algorithm. The circuit calls
for six registers, which are are detailed in Appendix A
and summarized in Table I. The initial state is a single
particle, in the f

1/2 basis. As a first step, one rotates this
initial particle from the f

1/2 basis to the fa/b basis, using
a simple unitary R operation discussed in Appendix A.
After this rotation, the quantum shower proceeds in N
steps, with the same block repeated for each step. The
sub-circuit describing the one-step operations is shown in
Fig. 2. At each step, there are four operations, which are
summarized in Table II.
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FIG. 1. Full circuit schematic in terms of the circuit blocks
defined in Figure 2.

Register Purpose # of qubits

|pi Particle state 3(N + 1)

|hi Emission history N log
2

(N + 1)

|ei Did emission happen? 1

|n�i Number of bosons log
2

(N + 1)

|nai Number of fa log
2

(N + 1)

|nbi Number of fb log
2

(N + 1)

TABLE I. All of the registers in the quantum circuit.

At the end of the N -step evolution we must rotate
back into the f

1

/f
2

basis. We do so by applying the
R† gate to all of the three-qubit particle registers in |pi.
This creates interferences between equivalent final states
which had di↵erent intermediate fermions. Finally, we
measure all the qubits thereby generating one event. By
repeating the process over and over we can generate a
large number of events which we can then use to com-
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FIG. 2. Circuit for the mth step

Operation Complexity Operator Appendix

count particles N log
2

(N) U
count

C

decide emission N3 Ue D

create history N4 Uh E

adjust particles N Up F

TABLE II. Complexity of the various quantum circuit oper-
ations.

pute physical observables for our theory. The number of
standard quantum gates (single qubit gates and CNOT
gates) required at each step are summarized in Table IV.

Operation Number of Standard Gates

Count Particles 5⇥ [
P

log2(k)+3

n=3

34n� 27 ]

Decide Emission (k + 1)3 ⇥ [99 log
2

(k + 1)� 27]

Create History 5⇥ [
P

log2(k)+3

n=3

32n� 27] +
P

b[6(k + 1)3

⇥(2b� 1)[33(3 log
2

(k + 1) + b+ 3)� 27]]

Adjust Particles k ⇥M ⇥ [5 + 34 +
P

log2(k)
n=3

34n� 27]

TABLE III. Number of standard quantum gates (single qubit
gates and CNOT gates) necessary for each of the four main
operations.

The practical challenge with above circuit is that it
requires more connected qubits and operations than are
currently available in state-of-the-art hardware. There-
fore, we consider a special case that is amenable to
measurement on existing technology, which ignores the
� ! ff̄ splitting (naturally suppressed in gauge theo-
ries, but not in the scalar-only theory). This results in
a much simpler circuit since there is only one fermion,
but an arbitrary number of scalars (Appendix G). A de-
composition of the resulting circuit into single qubit and
CNOT gates requires n

gates

= 12N + 2 (Appendix H).
This model is however still su�ciently complex that the
classical MCMC described earlier1 fails to capture im-
portant quantum e↵ects when g

12

6= 0.

1

While the standard parton shower-inspired MCMC algorithm
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� ! ff̄ , which still follows the Markov Chain of ampli-
tudes in Eq. (5). The core idea of the quantum algo-
rithm is to first rotate to a particle basis where there is
no mixing between fermion states (Appendix B). In this
superposition basis, emissions between states are uncor-
related. Sudakov factors can then be used to govern the
no emission probability o↵ of the uncorrelated fermions.
The bulk of the quantum circuitry will then be dedicated
to book-keeping, to encode the emission history and de-
cide which fermions/bosons radiate/split at a given step
✓ in the shower.

Figure 1 is the quantum circuit implementing the
quantum final state radiation algorithm. The circuit calls
for six registers, which are are detailed in Appendix A
and summarized in Table I. The initial state is a single
particle, in the f

1/2 basis. As a first step, one rotates this
initial particle from the f

1/2 basis to the fa/b basis, using
a simple unitary R operation discussed in Appendix A.
After this rotation, the quantum shower proceeds in N
steps, with the same block repeated for each step. The
sub-circuit describing the one-step operations is shown in
Fig. 2. At each step, there are four operations, which are
summarized in Table II.
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Goal: implement our system’s Hamiltonian (e.g. the SM) in 
a proxy system (“quantum computer”) and let it evolve.

Quantum computers

Image credit: Flip Tanedo

What can be a proxy system?

…any quantum system, like 
a collection of spins.
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The best quantum computer is the one that looks 
just like the system you are trying to model!

Image credit: https://www3.physik.uni-stuttgart.de/TR21/en/about/research.php

Analog versus Digital Quantum Circuits

Goal: implement our system’s Hamiltonian (e.g. the SM) in 
a proxy system (“quantum computer”) and let it evolve.

https://www3.physik.uni-stuttgart.de/TR21/en/about/research.php


�8Analog versus Digital Quantum Circuits

The best quantum computer is the one that looks 
just like the system you are trying to model!

Image credit: CERN

Not always 

possible!

Goal: implement our system’s Hamiltonian (e.g. the SM) in 
a proxy system (“quantum computer”) and let it evolve.
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In this setup, the possibilities are 
endless; the key is efficiency.

Goal: implement our system’s Hamiltonian (e.g. the SM) in 
a proxy system (“quantum computer”) and let it evolve.
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There is no consensus on architecture, but most efforts for 
universal quantum computing use superconductors. 

I’m not going to talk about hardware, 
though it is an exciting topic.
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There is no consensus on architecture, but most efforts for 
universal quantum computing use superconductors. 

classical computing in the 1970’s

IBM 7090

IBM Q

quantum computing now

I’m not going to talk about hardware, 
though it is an exciting topic.



�12State-of-the-art quantum computers

The best quantum computers have O(10) qubits 
with O(1) connections per qubit and can stay 

coherent for O(100) of operations.

A qubit is an abstract representation of a 
quantum system that can be in a superposition 

of two states (often thought of as a spin)

This is one of IBM’s 20-qubit 
quantum computers.  Lines 

represent connections.  
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Just like a classical computer, one can write 
programs for a universal quantum computer.
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� ! ff̄ , which still follows the Markov Chain of ampli-
tudes in Eq. (5). The core idea of the quantum algo-
rithm is to first rotate to a particle basis where there is
no mixing between fermion states (Appendix B). In this
superposition basis, emissions between states are uncor-
related. Sudakov factors can then be used to govern the
no emission probability o↵ of the uncorrelated fermions.
The bulk of the quantum circuitry will then be dedicated
to book-keeping, to encode the emission history and de-
cide which fermions/bosons radiate/split at a given step
✓ in the shower.

Figure 1 is the quantum circuit implementing the
quantum final state radiation algorithm. The circuit calls
for six registers, which are are detailed in Appendix A
and summarized in Table I. The initial state is a single
particle, in the f

1/2 basis. As a first step, one rotates this
initial particle from the f

1/2 basis to the fa/b basis, using
a simple unitary R operation discussed in Appendix A.
After this rotation, the quantum shower proceeds in N
steps, with the same block repeated for each step. The
sub-circuit describing the one-step operations is shown in
Fig. 3. At each step, there are four operations, which are
summarized in Table II.
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Register Purpose # of qubits

|pi Particle state 3(N + 1)

|hi Emission history N log
2

(N + 1)

|ei Did emission happen? 1

|n�i Number of bosons log
2

(N + 1)

|nai Number of fa log
2
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|nbi Number of fb log
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TABLE I. All of the registers in the quantum circuit.

At the end of the N -step evolution we must rotate
back into the f

1

/f
2

basis. We do so by applying the
R† gate to all of the three-qubit particle registers in |pi.
This creates interferences between equivalent final states
which had di↵erent intermediate fermions. Finally, we
measure all the qubits thereby generating one event. By
repeating the process over and over we can generate a
large number of events which we can then use to com-
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pute physical observables for our theory. The number of
standard quantum gates (single qubit gates and CNOT
gates) required at each step are summarized in Table IV.

The practical challenge with above circuit is that it
requires more connected qubits and operations than are
currently available in state-of-the-art hardware. There-
fore, we consider a special case that is amenable to
measurement on existing technology, which ignores the
� ! ff̄ splitting (naturally suppressed in gauge theo-
ries, but not in the scalar-only theory). This results in
a much simpler circuit since there is only one fermion,
but an arbitrary number of scalars (Appendix G). A de-
composition of the resulting circuit into single qubit and
CNOT gates requires n

gates

= 12N + 2 (Appendix H).
This model is however still su�ciently complex that the
classical MCMC described earlier1 fails to capture im-
portant quantum e↵ects when g

12

6= 0.
Figures 4 and 5 present the normalized di↵erential

cross sections of four examples from a class of observ-
ables,

P
i ✓

↵
i , for both classical simulations/calculations,

quantum simulations, and measurements with an IBM
quantum computer (IBM Q 5 Tenerife). The quantum
computer has five qubits, so N = 4 is the maximum
number of steps that can be modeled. When interference
e↵ects are turned o↵ (gLR = 0), we find an excellent
agreement between both the classical and quantum sim-
ulations as well as the quantum computer measurements.

1

While the standard parton shower-inspired MCMC algorithm

fails, we have discovered a quantum-inspired classical algorithm

that can e�ciently sample from the full probability distribution

- see Appendix J.
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pute physical observables for our theory. The number of
standard quantum gates (single qubit gates and CNOT
gates) required at each step are summarized in Table IV.

The practical challenge with above circuit is that it
requires more connected qubits and operations than are
currently available in state-of-the-art hardware. There-
fore, we consider a special case that is amenable to
measurement on existing technology, which ignores the
� ! ff̄ splitting (naturally suppressed in gauge theo-
ries, but not in the scalar-only theory). This results in
a much simpler circuit since there is only one fermion,
but an arbitrary number of scalars (Appendix G). A de-
composition of the resulting circuit into single qubit and
CNOT gates requires n

gates

= 12N + 2 (Appendix H).
This model is however still su�ciently complex that the
classical MCMC described earlier1 fails to capture im-
portant quantum e↵ects when g

12

6= 0.
Figures 4 and 5 present the normalized di↵erential

cross sections of four examples from a class of observ-
ables,

P
i ✓

↵
i , for both classical simulations/calculations,

quantum simulations, and measurements with an IBM
quantum computer (IBM Q 5 Tenerife). The quantum
computer has five qubits, so N = 4 is the maximum
number of steps that can be modeled. When interference
e↵ects are turned o↵ (gLR = 0), we find an excellent
agreement between both the classical and quantum sim-
ulations as well as the quantum computer measurements.

1

While the standard parton shower-inspired MCMC algorithm

fails, we have discovered a quantum-inspired classical algorithm

that can e�ciently sample from the full probability distribution

- see Appendix J.

Initialize in the 
ground state.
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pute physical observables for our theory. The number of
standard quantum gates (single qubit gates and CNOT
gates) required at each step are summarized in Table IV.

The practical challenge with above circuit is that it
requires more connected qubits and operations than are
currently available in state-of-the-art hardware. There-
fore, we consider a special case that is amenable to
measurement on existing technology, which ignores the
� ! ff̄ splitting (naturally suppressed in gauge theo-
ries, but not in the scalar-only theory). This results in
a much simpler circuit since there is only one fermion,
but an arbitrary number of scalars (Appendix G). A de-
composition of the resulting circuit into single qubit and
CNOT gates requires n

gates

= 12N + 2 (Appendix H).
This model is however still su�ciently complex that the
classical MCMC described earlier1 fails to capture im-
portant quantum e↵ects when g

12

6= 0.
Figures 4 and 5 present the normalized di↵erential

cross sections of four examples from a class of observ-
ables,

P
i ✓

↵
i , for both classical simulations/calculations,

quantum simulations, and measurements with an IBM
quantum computer (IBM Q 5 Tenerife). The quantum
computer has five qubits, so N = 4 is the maximum
number of steps that can be modeled. When interference
e↵ects are turned o↵ (gLR = 0), we find an excellent
agreement between both the classical and quantum sim-
ulations as well as the quantum computer measurements.

1

While the standard parton shower-inspired MCMC algorithm

fails, we have discovered a quantum-inspired classical algorithm

that can e�ciently sample from the full probability distribution

- see Appendix J.

Apply unitary matrix 
U1 to the third qubit



�17Programming

Just like a classical computer, one can write 
programs for a universal quantum computer. 3

� ! ff̄ , which still follows the Markov Chain of ampli-
tudes in Eq. (5). The core idea of the quantum algo-
rithm is to first rotate to a particle basis where there is
no mixing between fermion states (Appendix B). In this
superposition basis, emissions between states are uncor-
related. Sudakov factors can then be used to govern the
no emission probability o↵ of the uncorrelated fermions.
The bulk of the quantum circuitry will then be dedicated
to book-keeping, to encode the emission history and de-
cide which fermions/bosons radiate/split at a given step
✓ in the shower.

Figure 1 is the quantum circuit implementing the
quantum final state radiation algorithm. The circuit calls
for six registers, which are are detailed in Appendix A
and summarized in Table I. The initial state is a single
particle, in the f

1/2 basis. As a first step, one rotates this
initial particle from the f

1/2 basis to the fa/b basis, using
a simple unitary R operation discussed in Appendix A.
After this rotation, the quantum shower proceeds in N
steps, with the same block repeated for each step. The
sub-circuit describing the one-step operations is shown in
Fig. 3. At each step, there are four operations, which are
summarized in Table II.

|pi / R⌦N

U
(1)

step

U
(2)

step

. . .

U
(N)

step

R†

⌦N

|hi / . . .

|ei . . .

|n�i / . . .

|nAi / . . .

|nBi / . . .

FIG. 1. Full circuit schematic in terms of the circuit blocks
defined in Figure 3.

Register Purpose # of qubits

|pi Particle state 3(N + 1)

|hi Emission history N log
2

(N + 1)

|ei Did emission happen? 1

|n�i Number of bosons log
2

(N + 1)

|nai Number of fa log
2

(N + 1)

|nbi Number of fb log
2

(N + 1)

TABLE I. All of the registers in the quantum circuit.

At the end of the N -step evolution we must rotate
back into the f

1

/f
2

basis. We do so by applying the
R† gate to all of the three-qubit particle registers in |pi.
This creates interferences between equivalent final states
which had di↵erent intermediate fermions. Finally, we
measure all the qubits thereby generating one event. By
repeating the process over and over we can generate a
large number of events which we can then use to com-
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FIG. 3. Circuit for the mth step

pute physical observables for our theory. The number of
standard quantum gates (single qubit gates and CNOT
gates) required at each step are summarized in Table IV.

The practical challenge with above circuit is that it
requires more connected qubits and operations than are
currently available in state-of-the-art hardware. There-
fore, we consider a special case that is amenable to
measurement on existing technology, which ignores the
� ! ff̄ splitting (naturally suppressed in gauge theo-
ries, but not in the scalar-only theory). This results in
a much simpler circuit since there is only one fermion,
but an arbitrary number of scalars (Appendix G). A de-
composition of the resulting circuit into single qubit and
CNOT gates requires n

gates

= 12N + 2 (Appendix H).
This model is however still su�ciently complex that the
classical MCMC described earlier1 fails to capture im-
portant quantum e↵ects when g

12

6= 0.
Figures 4 and 5 present the normalized di↵erential

cross sections of four examples from a class of observ-
ables,

P
i ✓

↵
i , for both classical simulations/calculations,

quantum simulations, and measurements with an IBM
quantum computer (IBM Q 5 Tenerife). The quantum
computer has five qubits, so N = 4 is the maximum
number of steps that can be modeled. When interference
e↵ects are turned o↵ (gLR = 0), we find an excellent
agreement between both the classical and quantum sim-
ulations as well as the quantum computer measurements.

1

While the standard parton shower-inspired MCMC algorithm

fails, we have discovered a quantum-inspired classical algorithm

that can e�ciently sample from the full probability distribution

- see Appendix J.

Apply unitary matrix U2 to 
the second qubit when the 

third is 0, else apply U3.



�18Programming

Just like a classical computer, one can write 
programs for a universal quantum computer. 3

� ! ff̄ , which still follows the Markov Chain of ampli-
tudes in Eq. (5). The core idea of the quantum algo-
rithm is to first rotate to a particle basis where there is
no mixing between fermion states (Appendix B). In this
superposition basis, emissions between states are uncor-
related. Sudakov factors can then be used to govern the
no emission probability o↵ of the uncorrelated fermions.
The bulk of the quantum circuitry will then be dedicated
to book-keeping, to encode the emission history and de-
cide which fermions/bosons radiate/split at a given step
✓ in the shower.

Figure 1 is the quantum circuit implementing the
quantum final state radiation algorithm. The circuit calls
for six registers, which are are detailed in Appendix A
and summarized in Table I. The initial state is a single
particle, in the f

1/2 basis. As a first step, one rotates this
initial particle from the f

1/2 basis to the fa/b basis, using
a simple unitary R operation discussed in Appendix A.
After this rotation, the quantum shower proceeds in N
steps, with the same block repeated for each step. The
sub-circuit describing the one-step operations is shown in
Fig. 3. At each step, there are four operations, which are
summarized in Table II.
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FIG. 1. Full circuit schematic in terms of the circuit blocks
defined in Figure 3.

Register Purpose # of qubits

|pi Particle state 3(N + 1)

|hi Emission history N log
2

(N + 1)

|ei Did emission happen? 1

|n�i Number of bosons log
2

(N + 1)

|nai Number of fa log
2

(N + 1)

|nbi Number of fb log
2

(N + 1)

TABLE I. All of the registers in the quantum circuit.

At the end of the N -step evolution we must rotate
back into the f

1

/f
2

basis. We do so by applying the
R† gate to all of the three-qubit particle registers in |pi.
This creates interferences between equivalent final states
which had di↵erent intermediate fermions. Finally, we
measure all the qubits thereby generating one event. By
repeating the process over and over we can generate a
large number of events which we can then use to com-
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FIG. 3. Circuit for the mth step

pute physical observables for our theory. The number of
standard quantum gates (single qubit gates and CNOT
gates) required at each step are summarized in Table IV.

The practical challenge with above circuit is that it
requires more connected qubits and operations than are
currently available in state-of-the-art hardware. There-
fore, we consider a special case that is amenable to
measurement on existing technology, which ignores the
� ! ff̄ splitting (naturally suppressed in gauge theo-
ries, but not in the scalar-only theory). This results in
a much simpler circuit since there is only one fermion,
but an arbitrary number of scalars (Appendix G). A de-
composition of the resulting circuit into single qubit and
CNOT gates requires n

gates

= 12N + 2 (Appendix H).
This model is however still su�ciently complex that the
classical MCMC described earlier1 fails to capture im-
portant quantum e↵ects when g

12

6= 0.
Figures 4 and 5 present the normalized di↵erential

cross sections of four examples from a class of observ-
ables,

P
i ✓

↵
i , for both classical simulations/calculations,

quantum simulations, and measurements with an IBM
quantum computer (IBM Q 5 Tenerife). The quantum
computer has five qubits, so N = 4 is the maximum
number of steps that can be modeled. When interference
e↵ects are turned o↵ (gLR = 0), we find an excellent
agreement between both the classical and quantum sim-
ulations as well as the quantum computer measurements.

1

While the standard parton shower-inspired MCMC algorithm

fails, we have discovered a quantum-inspired classical algorithm

that can e�ciently sample from the full probability distribution

- see Appendix J.

Apply unitary matrix U4 to 
both the first and second 
quits when the third is 0.



�19Programming

Just like a classical computer, one can write 
programs for a universal quantum computer. 3

� ! ff̄ , which still follows the Markov Chain of ampli-
tudes in Eq. (5). The core idea of the quantum algo-
rithm is to first rotate to a particle basis where there is
no mixing between fermion states (Appendix B). In this
superposition basis, emissions between states are uncor-
related. Sudakov factors can then be used to govern the
no emission probability o↵ of the uncorrelated fermions.
The bulk of the quantum circuitry will then be dedicated
to book-keeping, to encode the emission history and de-
cide which fermions/bosons radiate/split at a given step
✓ in the shower.

Figure 1 is the quantum circuit implementing the
quantum final state radiation algorithm. The circuit calls
for six registers, which are are detailed in Appendix A
and summarized in Table I. The initial state is a single
particle, in the f

1/2 basis. As a first step, one rotates this
initial particle from the f

1/2 basis to the fa/b basis, using
a simple unitary R operation discussed in Appendix A.
After this rotation, the quantum shower proceeds in N
steps, with the same block repeated for each step. The
sub-circuit describing the one-step operations is shown in
Fig. 3. At each step, there are four operations, which are
summarized in Table II.

|pi / R⌦N

U
(1)

step

U
(2)

step

. . .

U
(N)

step

R†

⌦N

|hi / . . .

|ei . . .

|n�i / . . .

|nAi / . . .

|nBi / . . .

FIG. 1. Full circuit schematic in terms of the circuit blocks
defined in Figure 3.

Register Purpose # of qubits

|pi Particle state 3(N + 1)

|hi Emission history N log
2

(N + 1)

|ei Did emission happen? 1

|n�i Number of bosons log
2

(N + 1)

|nai Number of fa log
2

(N + 1)

|nbi Number of fb log
2

(N + 1)

TABLE I. All of the registers in the quantum circuit.

At the end of the N -step evolution we must rotate
back into the f

1

/f
2

basis. We do so by applying the
R† gate to all of the three-qubit particle registers in |pi.
This creates interferences between equivalent final states
which had di↵erent intermediate fermions. Finally, we
measure all the qubits thereby generating one event. By
repeating the process over and over we can generate a
large number of events which we can then use to com-
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FIG. 3. Circuit for the mth step

pute physical observables for our theory. The number of
standard quantum gates (single qubit gates and CNOT
gates) required at each step are summarized in Table IV.

The practical challenge with above circuit is that it
requires more connected qubits and operations than are
currently available in state-of-the-art hardware. There-
fore, we consider a special case that is amenable to
measurement on existing technology, which ignores the
� ! ff̄ splitting (naturally suppressed in gauge theo-
ries, but not in the scalar-only theory). This results in
a much simpler circuit since there is only one fermion,
but an arbitrary number of scalars (Appendix G). A de-
composition of the resulting circuit into single qubit and
CNOT gates requires n

gates

= 12N + 2 (Appendix H).
This model is however still su�ciently complex that the
classical MCMC described earlier1 fails to capture im-
portant quantum e↵ects when g

12

6= 0.
Figures 4 and 5 present the normalized di↵erential

cross sections of four examples from a class of observ-
ables,

P
i ✓

↵
i , for both classical simulations/calculations,

quantum simulations, and measurements with an IBM
quantum computer (IBM Q 5 Tenerife). The quantum
computer has five qubits, so N = 4 is the maximum
number of steps that can be modeled. When interference
e↵ects are turned o↵ (gLR = 0), we find an excellent
agreement between both the classical and quantum sim-
ulations as well as the quantum computer measurements.

1

While the standard parton shower-inspired MCMC algorithm

fails, we have discovered a quantum-inspired classical algorithm

that can e�ciently sample from the full probability distribution

- see Appendix J.

Measure all 
the qubits



�20Challenges with current computers

In practice: only controlled operation that is allowed is CNOT 
(swap if 1 otherwise do nothing) … need to decompose. 
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Appendix G: Circuit with no � ! ff̄

This allows us to drastically simplify our quantum cir-
cuit, since all we need now is a qubit which represents
the fermion and a boson register, with N qubits, which
keeps track of whether or not a boson was emitted at
a given time step. This boson register is the equivalent
to the emission register plus the particle register in the
general circuit. We no longer need a history register,
since we know the fermion is the only particle which can
emit, nor we need the count registers since in this limit
the probability of a boson being emitted only depends on
the flavor of the fermion. The full evolution can be car-
ried out with the much simpler circuit shown in Figure
11. The U and U † gates are the same as in (B2), while

|�nT i UA
n UB

n

. . . . . .

|�
1

i UA
1

UB
1

|fi U • • U†

FIG. 11. A quantum shower for the interfering model with
no � ! ff̄ splitting.

the UH
i gates (where H = R, L) are represented by the

matrices

UH
i =

 p
�H,i �p

qH,ip
qH,i

p
�H,i

!
, (G1)

which encode the amplitude for the fermion to emit or
not emit a boson at a given time step. These gates are
controlled on the fermion state since the gate parameters
depend on the flavor of the fermion. It is obvious that
the scaling of generating a single event with the number
of time steps is linear.

It is a result of the fact that the quantum algorithm
could theoretically be implemented on only 2 qubits. At
each time step the Ua and Ub gates are conditionally ap-
plied to a new qubit, but after that the qubit is left alone
until the final measurement at the end on the evolution.
Therefore, at each time step we could measure the qubit
on which the U gates act on, store the result, reset it to
the initial |0i state and reuse it for the next time step.
The reason we did not do this above is that this routine
of sequential measurements on the same qubit cannot be
implemented e�ciently on current hardware yet. A most
general version of the circuit in Figure 11 would be the
following:

|�i
U

1

|0i
U

2

|0i . . .
U

N

|fi . . .

where N is the total number of time steps and Ui is a
general two qubit gate which can be represented by a

unitary 4x4 matrix. At each time step I am recording
the measurement on the second qubit, and at the very
end I also measure the first qubit, hence generating one
event.

Appendix H: Gate decomposition

We first use the well known result

X • X
=

U U

In our case the gate U consists of a RY (✓) rotation
gate. Furthermore, we use the fact that for an arbitrary
controlled-U operation, one has

• • • P
=

U C B A

where

P =

 
1 0

0 ei 

!
, (H1)

and the following conditions are satisfied

U = exp(i )AXBXC ; ABC = I . (H2)

To apply this to the controlled-RY (✓) gate we let

A = RY (↵) B = RY (�) C = RY (↵) , (H3)

where ↵, � and  satisfy

↵ =
✓

4
� = �✓

2
,  = 0 . (H4)

Therefore, we have found gates A, B, C, P (where P
is the trivial identity matrix) that satisfy all conditions.
Using this information one finds that each time step re-
quires a total of 12 simple quantum gates (8 single qubit
gates and four CNOT gates), and in addition two trans-
formations are required at the beginning and end of the
circuit which also consist of single qubit gates. Generat-
ing a single event therefore requires a total of

n
gates

= 12N + 2 (H5)

single qubit and CNOT gates.

Appendix I: Circuit Decomposition

We now explain in some detail how to break down the
operations in our quantum circuit into standard quantum
gates (single qubit gates and CNOT gates), so that we

CNOT

There is no compiler … need to do 
circuit decomposition by hand (!)



�21Challenges with current computers

In practice: only controlled operation that is allowed is CNOT 
(swap if 1 otherwise do nothing) … need to decompose. 

Circuit implementation is architecture-dependent 
need to know what connections are available

(can swap, but CANNOT clone qubits!)



In practice: only controlled operation that is allowed is CNOT 
(swap if 1 otherwise do nothing) … need to decompose. 

Circuit implementation is architecture-dependent 
need to know what connections are available

�22Challenges with current computers

Most importantly: current quantum 
computers are super noisy.  Need to 

minimize number of operations. 

5

FIG. 4. The probability of finding an e+e� pair in the two-
spatial-site Schwinger model from the initial empty state fol-
lowing time evolution with U

T

(t, �t). In the unshaded region,
the blue points (triangle markers with visible error bars) are
quadratic extrapolations to zero noise using the data above
each point at increasing values of the noise parameter, r. (260
IBM allocation units and ⇠ 3.6 QPU·s)

We have optimized the sequence of operations in a first-
order Trotterization. While Trotterization bypasses the
classical resources needed in the previous time evolution
implementation to solve for the 9 angles of a symmet-
ric SU(4) matrix, its demand for long coherence times
is not satisfied with the T2 times available on current
quantum hardware. Using the reported gate specifica-
tions of ibmqx2 in terms of pulse sequences and their
temporal extent, the T2 coherence time of the device is
reached after ⇠ 10 time steps. This can be seen in Fig. 4
where the Trotterized evolution with �t = 0.1 saturates
to the classical probability of 0.5 after a small number of
steps—quantum coherence has been lost. This limitation
in the number of coherent time steps encourages the use
of larger values of �t (top data in shaded region), trading
accuracy of the Trotterization for coherence maintained
further into the time evolution. Even with this trade o↵,
this method is currently unable to explore the low-energy
structure of the dynamic fluctuations.

V. DISCUSSION AND OUTLOOK

Our work has identified key areas of future develop-
ment needed to robustly explore quantum field theories
with (imperfect) universal quantum computers. In order
to explore more complex dynamics such as the scatter-
ing of hadrons or the time evolution of charge screen-
ing, a balance between the short-depth circuits of exact
SU(2n) propagator evolution and the manageable classi-
cal resources required to Trotterize must be developed.
Regardless of the chosen method of time evolution, classi-

cal pre- and post-processing will continue to be invaluable
for scientifically-relevant calculations on near-term quan-
tum computers. By enforcing Gauss’s law, momentum
projecting states, and imposing the discrete symmetry
of parity, the exponential growth of the Schwinger model
Hilbert space has been softened su�ciently to achieve cal-
culations on IBMs superconducting quantum hardware.
This reduction has made possible the exploration of static
and dynamic observables within the current and foresee-
able experimental quantum computing landscape lacking
quantum error correction and limited by coherence times
and gate fidelities. Requiring such a classical reduction
in the process of building the physical, projected basis
admittedly does not allow for advantage in the Hilbert
space dimensionality accessible to the quantum vs classi-
cal computation. However, the space of advantage is mul-
tidimensional. By combining the strengths of the clas-
sical and quantum computers to respectively tame the
Hilbert space and evolve it, the proposed heterogeneous
framework profits in the exploration of time dependent,
non-equilibrium, and finite density systems inaccessible
to classical computations alone.
Our work represents one step toward solving QCD with

NISQ era quantum computers to address Grand Chal-
lenge problems in nuclear and high-energy physics.
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�23Potential of quantum computers

Caveats aside, there is a good reason to be excited.

There have been impressive leaps in hardware, “firmware”, 
& algorithms in the last years and interest has exploded.

Will you have a QPU in your laptop 5 years from now?

No.  But you may be able to run on a QPU in 
5 years that allows you to make a 

calculation that was not possible before (!)

perhaps some misguided … 



�24Our goal 

*for a great perspective piece, see Preskill’s recent Lattice2018 talk:1811.10085

There are many ongoing efforts to do full 
QFT calculations with a QPU lattice*.

Our goal is more focused: many aspects of QFT 
calculations can be performed well on classical computers  
(e.g. automated NLO with MadGraph … N.B. high energy part hardest for lattice) 

Can a piece of the calculation that is hard/impossible with 
classical computers & accelerate it on a QPU?



�25One challenge: Final state radiation

FSR is a complex many-body quantum system.

Perhaps quantum tools can be used to 
incorporate quantum degrees of freedom!
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�26A simple model with complex pheno

2

classical calculation scales exponentially with the num-
ber of steps used. The quantum algorithm will be able to
sample from the full probability distribution in polyno-
mial time. After describing the physics of the simplified
model, we will introduce the quantum circuit and show
empirical results with both a simulated and real quan-
tum computer. The article ends with outlook towards a
full quantum parton shower algorithm.

To begin, consider a simple quantum field theory, with
two types of fermion fields, f

1

and f
2

, interacting with
one scalar boson � governed by the following Lagrangian:

L =f̄
1

i(/@ +m
1

)f
1

+ f̄
2

(i/@ +m
2

)f
2

+ (@µ�)
2

+ g
1

f̄
1

f
1

�+ g
2

f̄
2

f
2

�+ g
12

⇥
f̄
1

f
2

+ f̄
2

f
1

⇤
� . (1)

In such a theory, the scalar field � can couple to either
fermion via the coupling constants g

1

or g
2

, or to one
fermion of each type, with coupling constant g

12

. The
couplings of fermions to scalar bosons occur in the Higgs
sector of the Standard Model, and it is known that the
final state collinear radiation at high energy, which was
considered in Ref. [17, 18], can be written in terms of a
parton shower.

We will revisit the connection to the Standard Model
later; for now, we will consider final state radiation gov-
erned by Eq. (1) with generic couplings. This model can
contain important interference e↵ects when all couplings
are non-zero, since the unobserved intermediate state of
the fermions can be a superposition of fi for i 2 {1, 2}.
The observable final state is a set of fermions and bosons
with their corresponding energies and locations inside the
‘jet’ of particles. Ignoring the � ! ff̄ splitting for now,
the jet is specified by the number and kinematic proper-
ties of the emitted bosons. For the amplitude

Ai!i0

n ⌘ A(i ! i0 + n�), (2)

there are n�1 internal fermions and thus a total of 2n�1

unobservable configurations. For example, to leading or-
der in the coupling constants,

A1!1

1

= g
1

Â
1

(p
1

) (3)

A1!1

2

= (g2
1

+ g2
12

)Â
2

(p
1

, p
2

), (4)

where pi is the momentum of boson i and Ân(p1, . . . , pn)
denotes the contribution to the amplitude which does not
involve the coupling constants and is the same for all con-
figurations. Already with two emissions, there is a non-
trivial interference between the f
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12

= 0, it
does not reproduce the interference arising in the full the-
ory given by Eq. (1) (still excluding � ! ff̄), where the
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model, we will introduce the quantum circuit and show
empirical results with both a simulated and real quan-
tum computer. The article ends with outlook towards a
full quantum parton shower algorithm.

To begin, consider a simple quantum field theory, with
two types of fermion fields, f

1

and f
2

, interacting with
one scalar boson � governed by the following Lagrangian:

L =f̄
1

i(/@ +m
1

)f
1

+ f̄
2

(i/@ +m
2

)f
2

+ (@µ�)
2

+ g
1

f̄
1

f
1

�+ g
2

f̄
2

f
2

�+ g
12

⇥
f̄
1

f
2

+ f̄
2

f
1

⇤
� . (1)

In such a theory, the scalar field � can couple to either
fermion via the coupling constants g

1

or g
2

, or to one
fermion of each type, with coupling constant g

12

. The
couplings of fermions to scalar bosons occur in the Higgs
sector of the Standard Model, and it is known that the
final state collinear radiation at high energy, which was
considered in Ref. [17, 18], can be written in terms of a
parton shower.

We will revisit the connection to the Standard Model
later; for now, we will consider final state radiation gov-
erned by Eq. (1) with generic couplings. This model can
contain important interference e↵ects when all couplings
are non-zero, since the unobserved intermediate state of
the fermions can be a superposition of fi for i 2 {1, 2}.
The observable final state is a set of fermions and bosons
with their corresponding energies and locations inside the
‘jet’ of particles. Ignoring the � ! ff̄ splitting for now,
the jet is specified by the number and kinematic proper-
ties of the emitted bosons. For the amplitude

Ai!i0

n ⌘ A(i ! i0 + n�), (2)

there are n�1 internal fermions and thus a total of 2n�1

unobservable configurations. For example, to leading or-
der in the coupling constants,

A1!1

1

= g
1

Â
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To model Ân, ones needs to choose a physical scale to
order emissions down to a collinear cuto↵ ✏ > 0 below
which emissions cannot be resolved. One common choice
is to evolve based on the angle of emissions ✓. In the
strongly ordered limit that applies to parton showers,

✓
0

� ✓
1

� · · · � ✓n, the kinematic part of the amplitude
factorizes as follows

Ân(✓1, . . . , ✓n) = Â(✓
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) . . . Â(✓n|✓n�1

) , (5)
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0

|✓
1

)Â(✓
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0

|✓
1

)Â(✓
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where pi is the momentum of boson i and Ân(p1, . . . , pn)
denotes the contribution to the amplitude which does not
involve the coupling constants and is the same for all con-
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To model Ân, ones needs to choose a physical scale to
order emissions down to a collinear cuto↵ ✏ > 0 below
which emissions cannot be resolved. One common choice
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One can e�ciently sample from Eq. (9) using a Markov
Chain algorithm by generating one emission at a time,
conditioned on the last emission. While this will cor-
rectly reproduce the physics of a theory with g
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= 0, it
does not reproduce the interference arising in the full the-
ory given by Eq. (1) (still excluding � ! ff̄), where the
fermion can change in the emission. The resulting inter-
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summation mentioned above. The Sudakov factor and
splitting function satisfy the unitarity relation
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Using the splitting function and Sudakov factor, a clas-
sical parton shower algorithm would predict the cross-
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One can e�ciently sample from Eq. (9) using a Markov
Chain algorithm by generating one emission at a time,
conditioned on the last emission. While this will cor-
rectly reproduce the physics of a theory with g

12

= 0, it
does not reproduce the interference arising in the full the-
ory given by Eq. (1) (still excluding � ! ff̄), where the
fermion can change in the emission. The resulting inter-
ference e↵ects can only be included by working with the
amplitudes directly. A single emission that changes the
type of fermion can be treated using a density matrix for-
malism [17], where each splitting function is represented
through a splitting matrix as

Pi!j�(✓) |fii hfj | . (10)
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i P̂ (✓),
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the full matrix structure of the split-
ting function needs to be retained. The complexity of
taking this into account to all orders, reduces to the full
amplitude calculation.
In what follows, we construct a quantum algorithm

to sample from the full amplitude, including all interfer-
ence e↵ects. We consider the complete case, including
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classical calculation scales exponentially with the num-
ber of steps used. The quantum algorithm will be able to
sample from the full probability distribution in polyno-
mial time. After describing the physics of the simplified
model, we will introduce the quantum circuit and show
empirical results with both a simulated and real quan-
tum computer. The article ends with outlook towards a
full quantum parton shower algorithm.
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In such a theory, the scalar field � can couple to either
fermion via the coupling constants g

1

or g
2

, or to one
fermion of each type, with coupling constant g

12

. The
couplings of fermions to scalar bosons occur in the Higgs
sector of the Standard Model, and it is known that the
final state collinear radiation at high energy, which was
considered in Ref. [17, 18], can be written in terms of a
parton shower.

We will revisit the connection to the Standard Model
later; for now, we will consider final state radiation gov-
erned by Eq. (1) with generic couplings. This model can
contain important interference e↵ects when all couplings
are non-zero, since the unobserved intermediate state of
the fermions can be a superposition of fi for i 2 {1, 2}.
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with their corresponding energies and locations inside the
‘jet’ of particles. Ignoring the � ! ff̄ splitting for now,
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Ai!i0
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where pi is the momentum of boson i and Ân(p1, . . . , pn)
denotes the contribution to the amplitude which does not
involve the coupling constants and is the same for all con-
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1
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not swapping at all. For the emissions of more bosons,
the combinatorics required to obtain the coupling con-
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12

! 0, Ai!i
n / gni .

To model Ân, ones needs to choose a physical scale to
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which emissions cannot be resolved. One common choice
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One can e�ciently sample from Eq. (9) using a Markov
Chain algorithm by generating one emission at a time,
conditioned on the last emission. While this will cor-
rectly reproduce the physics of a theory with g

12

= 0, it
does not reproduce the interference arising in the full the-
ory given by Eq. (1) (still excluding � ! ff̄), where the
fermion can change in the emission. The resulting inter-
ference e↵ects can only be included by working with the
amplitudes directly. A single emission that changes the
type of fermion can be treated using a density matrix for-
malism [17], where each splitting function is represented
through a splitting matrix as
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but for non-zero g
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the full matrix structure of the split-
ting function needs to be retained. The complexity of
taking this into account to all orders, reduces to the full
amplitude calculation.
In what follows, we construct a quantum algorithm

to sample from the full amplitude, including all interfer-
ence e↵ects. We consider the complete case, including
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� ! ff̄ , which still follows the Markov Chain of ampli-
tudes in Eq. (5). The core idea of the quantum algo-
rithm is to first rotate to a particle basis where there is
no mixing between fermion states (Appendix B). In this
superposition basis, emissions between states are uncor-
related. Sudakov factors can then be used to govern the
no emission probability o↵ of the uncorrelated fermions.
The bulk of the quantum circuitry will then be dedicated
to book-keeping, to encode the emission history and de-
cide which fermions/bosons radiate/split at a given step
✓ in the shower.

Figure 1 is the quantum circuit implementing the
quantum final state radiation algorithm. The circuit calls
for six registers, which are are detailed in Appendix A
and summarized in Table I. The initial state is a single
particle, in the f

1/2 basis. As a first step, one rotates this
initial particle from the f

1/2 basis to the fa/b basis, using
a simple unitary R operation discussed in Appendix A.
After this rotation, the quantum shower proceeds in N
steps, with the same block repeated for each step. The
sub-circuit describing the one-step operations is shown in
Fig. 2. At each step, there are four operations, which are
summarized in Table II.

|pi / R⌦N

U
(1)

step

U
(2)

step

. . .

U
(N)

step

R†

⌦N

|hi / . . .

|ei . . .

|n�i / . . .

|nAi / . . .

|nBi / . . .

FIG. 1. Full circuit schematic in terms of the circuit blocks
defined in Figure 2.

Register Purpose # of qubits

|pi Particle state 3(N + 1)

|hi Emission history N log
2

(N + 1)

|ei Did emission happen? 1

|n�i Number of bosons log
2

(N + 1)

|nai Number of fa log
2

(N + 1)

|nbi Number of fb log
2

(N + 1)

TABLE I. All of the registers in the quantum circuit.

At the end of the N -step evolution we must rotate
back into the f

1

/f
2

basis. We do so by applying the
R† gate to all of the three-qubit particle registers in |pi.
This creates interferences between equivalent final states
which had di↵erent intermediate fermions. Finally, we
measure all the qubits thereby generating one event. By
repeating the process over and over we can generate a
large number of events which we can then use to com-

|pi / p p U
(m)

p

U
(m)

step

|hi / Uh h

|ei U
(m)

e e ⌘

|n�i /

U
count

n�

Uh|nai / nA

|nbi / nB

FIG. 2. Circuit for the mth step

Operation Complexity Operator Appendix

count particles N log
2

(N) U
count

C

decide emission N3 Ue D

create history N4 Uh E

adjust particles N Up F

TABLE II. Complexity of the various quantum circuit oper-
ations.

pute physical observables for our theory. The number of
standard quantum gates (single qubit gates and CNOT
gates) required at each step are summarized in Table IV.

Operation Number of Standard Gates

Count Particles 5⇥ [
P

log2(k)+3

n=3

34n� 27 ]

Decide Emission (k + 1)3 ⇥ [99 log
2

(k + 1)� 27]

Create History 5⇥ [
P

log2(k)+3

n=3

32n� 27] +
P

b[6(k + 1)3

⇥(2b� 1)[33(3 log
2

(k + 1) + b+ 3)� 27]]

Adjust Particles k ⇥M ⇥ [5 + 34 +
P

log2(k)
n=3

34n� 27]

TABLE III. Number of standard quantum gates (single qubit
gates and CNOT gates) necessary for each of the four main
operations.

The practical challenge with above circuit is that it
requires more connected qubits and operations than are
currently available in state-of-the-art hardware. There-
fore, we consider a special case that is amenable to
measurement on existing technology, which ignores the
� ! ff̄ splitting (naturally suppressed in gauge theo-
ries, but not in the scalar-only theory). This results in
a much simpler circuit since there is only one fermion,
but an arbitrary number of scalars (Appendix G). A de-
composition of the resulting circuit into single qubit and
CNOT gates requires n

gates

= 12N + 2 (Appendix H).
This model is however still su�ciently complex that the
classical MCMC described earlier1 fails to capture im-
portant quantum e↵ects when g

12

6= 0.

1

While the standard parton shower-inspired MCMC algorithm

where each splitting function is represented through a splitting matrix as

Pi!j�(✓) |fii hfj| . (6)

In the limit of g
12

! 0 we have Pi!j�(✓) ! �i,jg
2

i
ˆP (✓), but for non-zero g

12

the full matrix

structure of the splitting function needs to be retained. The complexity of taking this into account

to all orders, reduces to the full amplitude calculation.

The quantum circuit implementing the quantum final state radiation algorithm (now includ-

ing the � ! f ¯f splittings) for one of N steps is given by the following diagram:

|pi / R(m) p p U
(m)

p R(m)

†

|hi / Uh h

|ei U
(m)

e e

|n�i /

U
count

n�

Uh|nai / na

|nbi / nb

The circuit calls for six registers, which are are detailed in the Methods and summarized in

Tables 1 and 2. The initial state consists of nI particles (which can be fermions or bosons) in the

f
1/2 basis. One starts by rotating this initial particle state from the f

1/2 basis to the fa/b basis,

using a simple unitary R operation discussed in the Methods. Then, a series of operations evolving

the particles states are applied: the number of particles of each type are counted (Ucount), Sudakov

factors are used to determine if an emission occurred (Ue), given an emission, a particular particle

5

Register Purpose # of qubits

|pi Particle state 3(N + nI)

|hi Emission history Ndlog
2

(N + nI)e

|ei Did emission happen? 1

|n�i Number of bosons dlog
2

(N + nI)e

|nai Number of fa dlog
2

(N + nI)e

|nbi Number of fb dlog
2

(N + nI)e

Table 1: All of the registers in the quantum circuit with the number of qubits they require

for N steps and nI initial particles. The symbol d. . .e denotes the ceiling function.

Operation
Complexity

Scaling (N = 4) (N = 24)

count particles [U
count

] N lnN 4.93⇥ 10

2

5.45⇥ 10

4

decide emission [Ue] N4

lnN 9.29⇥ 10

3

8.75⇥ 10

6

create history [Uh] N5

lnN 1.69⇥ 10

5

1.19⇥ 10

9

adjust particles [ Up] N2

lnN 5.01⇥ 10

3

3.37⇥ 10

5

Table 2: List of the circuit operations with the number of standard gates required for given

numbers of steps assuming nI = 1. Further details about the calculations involved and the

counting of the number of gates can be found in the Methods section. As discussed, the

overall scaling reduces by 2 powers of N if one measures and resets the history register

after each step.
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I’ll show you the circuit when 
the splitting is turned off in a 
moment, but for fun, let’s talk 

about one element.

7

Since the splitting function in the new basis is diagonal,
the model in the new fa/b basis is much simpler and does
not include any interference, since fermions can no longer
change flavor. The unitary transformations R and R†

transform the system of particles from the o↵-diagonal
case to the diagonal one.

Since each particle is represented by a 3-qubit state,
the operation R that rotates a single particle from the
f
1/2 basis to the fa/b basis is represented by a 8 ⇥ 8
unitary matrix R. It is defined in terms of the matrix
U , defined in B5. For the representation of the particles
given in Appendix A, one has

R =

0

BBB@

I 0 0 0

0 U 0 0

0 0 U 0

0 0 0 I

1

CCCA
, (B7)

where I denotes the 2⇥ 2 identity matrix. The rotation
R correctly mixes the fermion states, while it leaves alone
the |�i and |0i states.

Appendix C: Populating the register to counting the
particles

In this section we give details about the first opera-
tion required in each step, which counts the number of
each particle type in the current state and storing these
numbers in the count registers |n�i, |nAi and |nBi. As
discussed, at the beginning of each step they are in the
state |0i. To perform this counting we apply the con-

trolled U
(m)

count

gate, which is broken down in Figure 5.
For each particle in the state |pi we apply the unitary
operation U

+

to the appropriate count register. The op-
eration U

+

is defined on a set of integer states ranging
from 0 . . . N as

U
+

|ni = |n+ 1i
modN

. (C1)

|pi / � fA f̄A fB f̄B

|n�i / U
+

|nAi / U
+

U
+

|nBi / U
+

U
+

FIG. 5. circuit operation for counting the particles

Appendix D: Sudakov factors in the quantum circuit

In this section we discuss how we implement the second
operation required in each step, which decides whether

an emission happens or not. In the a/b basis the split-
ting can not change the flavor of the emitting fermion,
and the evolution can therefore be described in terms of
individual splitting functions and Sudakov factors, just
as in a usual MCMC. For the fermions there are 2 di↵er-
ent splitting functions

Pi!i�(✓) = g2i P̂f (✓) , (D1)

where i 2 {a, b}. The splitting of the bosons are given
by

P�!i¯i(✓) = g2i P̂�(✓) , (D2)

Using these splitting functions, one can define Sudakov
factors, which describe the probability to have no emis-
sion from a given particle in a given step m. One finds

�i(✓m, ✓m+1

) ⌘ exp [��✓ Pi(✓m)]

��(✓m, ✓m+1

) ⌘ exp [��✓ (P�(✓m) )] , (D3)

where

Pi(✓m) ⌘ Pi!i�(✓m)

P�(✓m) ⌘ P�!aā(✓m) + P�!b¯b(✓m) (D4)

and

�✓ = ✓m � ✓m+1

. (D5)

The probability to have no emission from a state con-
taining n� bosons and na/b fermions of type a/b, is then
giving by

�(m)(✓m) = �
n�

� (✓m)�na
a (✓m)�nb

b (✓m) (D6)

From this one can derive the probability to have a branch-
ing, which is given by

qp(✓m) ⌘
Z ✓m+1

✓m

d✓Pp(✓m)�p(✓m, ✓)

= 1��p(✓m, ✓m+1

) . (D7)

One therefore finds the unitarity condition

�p(✓m, ✓m+1

) + qp(✓m) = 1 . (D8)

This splitting probability can be encoded in the quan-

tum circuit through the rotation U
(m)

e on the qubit |ei.
It starts o↵ in the state |0i and is transformed to |1i if
there is an emission and stays if there is not. The emis-
sion matrix is given by

U (m)

e =

 
�(m)(✓m) �

p
1��(m)(✓m)p

1��(m)(✓m) �(m)(✓m)

!
.

(D9)

(Sudakov factor)

�i(✓m, ✓m+1) = e��✓Pi(✓m)

�(m)(✓m) = �
n�

� (✓m)�
nf1
f1

(✓m)�
nf2
f2

(✓m)

where each splitting function is represented through a splitting matrix as

Pi!j�(✓) |fii hfj| . (6)

In the limit of g
12

! 0 we have Pi!j�(✓) ! �i,jg
2

i
ˆP (✓), but for non-zero g

12

the full matrix

structure of the splitting function needs to be retained. The complexity of taking this into account

to all orders, reduces to the full amplitude calculation.

The quantum circuit implementing the quantum final state radiation algorithm (now includ-

ing the � ! f ¯f splittings) for one of N steps is given by the following diagram:
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†
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U
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The circuit calls for six registers, which are are detailed in the Methods and summarized in

Tables 1 and 2. The initial state consists of nI particles (which can be fermions or bosons) in the

f
1/2 basis. One starts by rotating this initial particle state from the f

1/2 basis to the fa/b basis,

using a simple unitary R operation discussed in the Methods. Then, a series of operations evolving

the particles states are applied: the number of particles of each type are counted (Ucount), Sudakov

factors are used to determine if an emission occurred (Ue), given an emission, a particular particle

5
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Appendix G: Circuit with no � ! ff̄

This allows us to drastically simplify our quantum cir-
cuit, since all we need now is a qubit which represents
the fermion and a boson register, with N qubits, which
keeps track of whether or not a boson was emitted at
a given time step. This boson register is the equivalent
to the emission register plus the particle register in the
general circuit. We no longer need a history register,
since we know the fermion is the only particle which can
emit, nor we need the count registers since in this limit
the probability of a boson being emitted only depends on
the flavor of the fermion. The full evolution can be car-
ried out with the much simpler circuit shown in Figure
11. The U and U † gates are the same as in (B2), while

|�nT i UA
n UB

n

. . . . . .

|�
1

i UA
1

UB
1

|fi U • • U†

FIG. 11. A quantum shower for the interfering model with
no � ! ff̄ splitting.

the UH
i gates (where H = R, L) are represented by the

matrices

UH
i =

 p
�H,i �p

qH,ip
qH,i

p
�H,i

!
, (G1)

which encode the amplitude for the fermion to emit or
not emit a boson at a given time step. These gates are
controlled on the fermion state since the gate parameters
depend on the flavor of the fermion. It is obvious that
the scaling of generating a single event with the number
of time steps is linear.

It is a result of the fact that the quantum algorithm
could theoretically be implemented on only 2 qubits. At
each time step the Ua and Ub gates are conditionally ap-
plied to a new qubit, but after that the qubit is left alone
until the final measurement at the end on the evolution.
Therefore, at each time step we could measure the qubit
on which the U gates act on, store the result, reset it to
the initial |0i state and reuse it for the next time step.
The reason we did not do this above is that this routine
of sequential measurements on the same qubit cannot be
implemented e�ciently on current hardware yet. A most
general version of the circuit in Figure 11 would be the
following:

|�i
U

1

|0i
U

2

|0i . . .
U

N

|fi . . .

where N is the total number of time steps and Ui is a
general two qubit gate which can be represented by a

unitary 4x4 matrix. At each time step I am recording
the measurement on the second qubit, and at the very
end I also measure the first qubit, hence generating one
event.

Appendix H: Gate decomposition

We first use the well known result

X • X
=

U U

In our case the gate U consists of a RY (✓) rotation
gate. Furthermore, we use the fact that for an arbitrary
controlled-U operation, one has

• • • P
=

U C B A

where

P =

 
1 0

0 ei 

!
, (H1)

and the following conditions are satisfied

U = exp(i )AXBXC ; ABC = I . (H2)

To apply this to the controlled-RY (✓) gate we let

A = RY (↵) B = RY (�) C = RY (↵) , (H3)

where ↵, � and  satisfy

↵ =
✓

4
� = �✓

2
,  = 0 . (H4)

Therefore, we have found gates A, B, C, P (where P
is the trivial identity matrix) that satisfy all conditions.
Using this information one finds that each time step re-
quires a total of 12 simple quantum gates (8 single qubit
gates and four CNOT gates), and in addition two trans-
formations are required at the beginning and end of the
circuit which also consist of single qubit gates. Generat-
ing a single event therefore requires a total of

n
gates

= 12N + 2 (H5)

single qubit and CNOT gates.

Appendix I: Circuit Decomposition

We now explain in some detail how to break down the
operations in our quantum circuit into standard quantum
gates (single qubit gates and CNOT gates), so that we

In words: rotate to the basis where there is no 
interference, “emit” scalars (at the amplitude level), 

and then rotate back to the physical basis at the end.



�30The circuit without scalar splitting
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Appendix G: Circuit with no � ! ff̄

This allows us to drastically simplify our quantum cir-
cuit, since all we need now is a qubit which represents
the fermion and a boson register, with N qubits, which
keeps track of whether or not a boson was emitted at
a given time step. This boson register is the equivalent
to the emission register plus the particle register in the
general circuit. We no longer need a history register,
since we know the fermion is the only particle which can
emit, nor we need the count registers since in this limit
the probability of a boson being emitted only depends on
the flavor of the fermion. The full evolution can be car-
ried out with the much simpler circuit shown in Figure
11. The U and U † gates are the same as in (B2), while

|�nT i UA
n UB

n

. . . . . .

|�
1

i UA
1

UB
1

|fi U • • U†

FIG. 11. A quantum shower for the interfering model with
no � ! ff̄ splitting.

the UH
i gates (where H = R, L) are represented by the

matrices

UH
i =

 p
�H,i �p

qH,ip
qH,i

p
�H,i

!
, (G1)

which encode the amplitude for the fermion to emit or
not emit a boson at a given time step. These gates are
controlled on the fermion state since the gate parameters
depend on the flavor of the fermion. It is obvious that
the scaling of generating a single event with the number
of time steps is linear.

It is a result of the fact that the quantum algorithm
could theoretically be implemented on only 2 qubits. At
each time step the Ua and Ub gates are conditionally ap-
plied to a new qubit, but after that the qubit is left alone
until the final measurement at the end on the evolution.
Therefore, at each time step we could measure the qubit
on which the U gates act on, store the result, reset it to
the initial |0i state and reuse it for the next time step.
The reason we did not do this above is that this routine
of sequential measurements on the same qubit cannot be
implemented e�ciently on current hardware yet. A most
general version of the circuit in Figure 11 would be the
following:

|�i
U

1

|0i
U

2

|0i . . .
U

N

|fi . . .

where N is the total number of time steps and Ui is a
general two qubit gate which can be represented by a

unitary 4x4 matrix. At each time step I am recording
the measurement on the second qubit, and at the very
end I also measure the first qubit, hence generating one
event.

Appendix H: Gate decomposition

We first use the well known result

X • X
=

U U

In our case the gate U consists of a RY (✓) rotation
gate. Furthermore, we use the fact that for an arbitrary
controlled-U operation, one has

• • • P
=

U C B A

where

P =

 
1 0

0 ei 

!
, (H1)

and the following conditions are satisfied

U = exp(i )AXBXC ; ABC = I . (H2)

To apply this to the controlled-RY (✓) gate we let

A = RY (↵) B = RY (�) C = RY (↵) , (H3)

where ↵, � and  satisfy

↵ =
✓

4
� = �✓

2
,  = 0 . (H4)

Therefore, we have found gates A, B, C, P (where P
is the trivial identity matrix) that satisfy all conditions.
Using this information one finds that each time step re-
quires a total of 12 simple quantum gates (8 single qubit
gates and four CNOT gates), and in addition two trans-
formations are required at the beginning and end of the
circuit which also consist of single qubit gates. Generat-
ing a single event therefore requires a total of

n
gates

= 12N + 2 (H5)

single qubit and CNOT gates.

Appendix I: Circuit Decomposition

We now explain in some detail how to break down the
operations in our quantum circuit into standard quantum
gates (single qubit gates and CNOT gates), so that we

Note:       is not touched after tilmestep i and so one 
can reuse qubits … only need 2 total qubits (!)   
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Particles produced in high energy collisions that are charged under one of the fundamental forces
will radiate proportionally to their charge, such as photon radiation from electrons in quantum
electrodynamics. Realistic simulations of such collisions in collider- or cosmic-based high energy
physics require an accurate model of this final state radiation pattern. When the charge is large,
the radiation pattern is a complex, many-body quantum system. Classical Markov Chain Monte
Carlo approaches work well to capture many of the salient features of the shower of radiation, but
cannot capture all quantum e↵ects. This is particularly true when additionally the gauge group is
non-Abelian, as is the case for quantum chromodynamics. We show how quantum algorithms are
well-suited for describing the quantum properties of final state radiation. In particular, we develop
a polynomial time quantum final state shower procedure. The algorithm is explicitly demonstrated
for a simplified quantum field theory on a quantum computer. With future advances in quantum
computing hardware, our algorithm will be able to improve precision calculations for many high
energy physics measurements.

|�ii

While quantum computers hold great promise for
e�ciently solving classical problems such as querying
databases [? ] or factoring integers into primes [? ],
their most natural application is to describe inherently
quantum physical systems [? ]. The most direct connec-
tion between quantum systems and quantum computers
occurs for analog circuits that try to mimic the evolution
of a Hamiltonian as closely as possible [? ]. However,
some physical systems are too complex or have too many
degrees of freedom to model with a quantum circuit in
the near future. For example, this is true for a generic
quantum field theory, where there are both continuous
quantum numbers as well as an infinite number of de-
grees of freedom. While tools have been developed to
model quantum field theories by discretizing spacetime [?
] and even including continuous quantum numbers [? ],
the number of quantum bits (or their continuous analog)
required to compute any relevant scattering amplitude is
impractically large.

A promising alternative to analog circuits are digital
quantum circuits, which use quantum algorithms to de-
scribe inherently quantum physical systems without di-
rectly implementing the system’s Hamiltonian. Such a
scheme has already been applied to a simple quantum
field theory on the lattice [? ]. The dynamics of high
energy scattering processes, however, are too complex

⇤

cwbauer@lbl.gov

†

bpnachman@lbl.gov

‡

davideprovasoli@lbl.gov

§

WAdeJong@lbl.gov

for lattice methods, as are methods based on traditional
perturbative theory if the number of final state particles
becomes too large. A successful approach to simulating
these dynamics is known as the parton shower [? ], which
relies on reorganizing the perturbative expansion to ex-
pand around the collinear and soft limit of emissions.
This leads to di↵erent series expansions where each term
includes infinitely many terms in the original ↵s series ex-
pansion, and is the basis of parton shower Monte Carlo
(MC) programs [? ? ? ? ], which are the main compo-
nent of high energy quark and gluon scattering simula-
tion.

Parton shower programs are implemented using classi-
cal MC Markov Chain (MCMC) algorithms to e�ciently
generate high multiplicity radiation patterns. This re-
liance on classical MCMC algorithms implies that several
quantum interference e↵ects need to be neglected. For
showers describing emissions in the strong interaction,
this means that showers can only be implemented in the
limit of large number of colors (NC = 3 ! 1). While an
impressive research e↵ort to include subleading color ef-
fects exists [? ? ? ], there is a fundamental limitation in
the ability of MCMC methods to e�ciently capture this
physics. For showers describing the electroweak interac-
tions [? ], interference e↵ects can arise because physically
distinct particles can have related interactions, such that
amplitudes which di↵er in their intermediate particles
can interfere with one another. An important examples
is the interference of amplitudes involving intermediate
Z bosons and photons.

Our primary motivation is to develop a quantum cir-
cuit for describing the quantum properties of parton
showers. In this work, we consider interference e↵ects
in showers that have interference from di↵erent interme-
diate particles, using a simplified model that captures
these e↵ects without having to introduce the full com-

Fine print: (1) re-measurement is not a feature of most current quantum computers and (2) this led 
us to a classical algorithm that can capture the full interference effects (but is not the naive MCMC).



�31Some numerical results

angle of maximum emission number of emissions
Figure 1: The normalized differential cross section for log ✓

max

(left) and the number of emissions

(right). Interference effects are turned on (g
12

= 0) and off (g
12

= 0), where the classical simu-

lations/calculations are expected to agree with the quantum simulations and measurements. As a

demonstration of the full circuit with � ! f ¯f is also included with two simulated steps both with

g
12

= 0 and g
12

= 1. Over 105 events contribute to each line.

13

no interference
with interference



�32The future

There is a long road ahead, but quantum algorithms are very 
promising for modeling high energy scattering processes.

Image credit: Flip Tanedo

…in the mean time, note that there is an 
impressive effort to add in quantum 

effects to parton showers as corrections.  

see e.g. this pioneering work: Nagy 
and Soper, JHEP 09 (2007) 114

Still serious challenges: scalability, noise, etc.

Today I gave you a small 
taste of what is possible - 

stay tuned for more! 
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Figure 2 The number of standard qubit gates as a function of the number of states,

using the formulae given in Eqs. (41), (43), (46) and (48) . The asymptotic behavior is

illustrated with a fit to N5

lnN .

35



Register Purpose # of qubits

|pi Particle state 3(N + nI)

|hi Emission history Ndlog
2

(N + nI)e

|ei Did emission happen? 1

|n�i Number of bosons dlog
2

(N + nI)e

|nai Number of fa dlog
2

(N + nI)e

|nbi Number of fb dlog
2

(N + nI)e

Table 1: All of the registers in the quantum circuit with the number of qubits they require

for N steps and nI initial particles. The symbol d. . .e denotes the ceiling function.

Operation
Complexity

Scaling (N = 4) (N = 24)

count particles [U
count

] N lnN 4.93⇥ 10

2

5.45⇥ 10

4

decide emission [Ue] N4

lnN 9.29⇥ 10

3

8.75⇥ 10

6

create history [Uh] N5

lnN 1.69⇥ 10

5

1.19⇥ 10

9

adjust particles [ Up] N2

lnN 5.01⇥ 10

3

3.37⇥ 10

5

Table 2: List of the circuit operations with the number of standard gates required for given

numbers of steps assuming nI = 1. Further details about the calculations involved and the

counting of the number of gates can be found in the Methods section. As discussed, the

overall scaling reduces by 2 powers of N if one measures and resets the history register

after each step.
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Methods

The registers of the quantum circuit The quantum circuit introduced in this paper has a total of

6 registers. The first register, |pi, contains the flavor information about each particle. Each particle

in the system can be in one of 6 states |0i, |�i,
��fa/b

↵
, and

�� ¯fa/b
↵
. To encode these 6 states one

requires 3 qubits, and we choose the representation as

|pii =

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

000

001

010

011

100

101

110

111

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

0

�

�

�

f
1

/fa

f
2

/fb

¯f
1

/ ¯fa

¯f
2

/ ¯fb

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

, (7)

where the third and fourth states are not used and one chooses f
1/2 and fa/b before and after the

basis change discussed in the next section. Since there can be up to N + nI particles in the system

(where nI is the initial number of particles and N is the number of steps), one needs a total of

dim[|pi] = 3(N + nI) (8)

qubits to encode this register.

The second register, |hi, holds the information about which particle emitted a particle at a

given step. At the start of the mth step (where the first step has m = 0), there are up to m + nI

15

where each splitting function is represented through a splitting matrix as

Pi!j�(✓) |fii hfj| . (6)

In the limit of g
12

! 0 we have Pi!j�(✓) ! �i,jg
2

i
ˆP (✓), but for non-zero g

12

the full matrix

structure of the splitting function needs to be retained. The complexity of taking this into account

to all orders, reduces to the full amplitude calculation.

The quantum circuit implementing the quantum final state radiation algorithm (now includ-

ing the � ! f ¯f splittings) for one of N steps is given by the following diagram:

|pi / R(m) p p U
(m)

p R(m)

†

|hi / Uh h

|ei U
(m)

e e

|n�i /

U
count

n�

Uh|nai / na

|nbi / nb

The circuit calls for six registers, which are are detailed in the Methods and summarized in

Tables 1 and 2. The initial state consists of nI particles (which can be fermions or bosons) in the

f
1/2 basis. One starts by rotating this initial particle state from the f

1/2 basis to the fa/b basis,

using a simple unitary R operation discussed in the Methods. Then, a series of operations evolving

the particles states are applied: the number of particles of each type are counted (Ucount), Sudakov

factors are used to determine if an emission occurred (Ue), given an emission, a particular particle

5


