Constraining the Higgs Width @ HL-LHC

Phil Harris, Dylan Rankin (MIT) Cristina Mantilla Suarez (Johns Hopkins)

(paper in preparation)

BOOST 2019

Overview

- Higgs Width: constraints and future prospects
- Proposal to constrain Γ_H
 - Higgs tagging
 - Measurement strategy
 - Projections @ 3000fb⁻¹ HL-LHC
 This is only a proof of concept

The Higgs Width: FH

- **★** Γ_{SM} = 4.2 MeV
- Total cross section depends on coupling strengths in production g_i and decay g_f stages, and width Γ_H

* How to extract Γ_H from an inclusive cross section measurement?

FH@Future Colliders

- * Muon collider: great resolution $\delta\Gamma_H/\Gamma_{SM} \approx 0.05$
- * Electron collider (e.g. ILC $\delta\Gamma_H/\Gamma_{SM} \approx 0.1$):

1. Measure Zh cross section from recoil mass. $\sigma(a^+a^- \rightarrow Zh) \propto a^2$

 $\sigma(e^+e^- \to Zh) \propto g_{hZZ}^2$

FH@Future Colliders

- * Muon collider: great resolution $\delta\Gamma_H/\Gamma_{SM} \approx 0.05$
- ★ Electron collider (e.g. ILC $\delta\Gamma_H/\Gamma_{SM} \approx 0.1$):

1. Measure Zh cross section from recoil mass.

$$\sigma(e^+e^- \to Zh) \propto g_{hZZ}^2$$

2. Measure h→ZZ decay

$$\sigma_{Zh\to XX} \propto \frac{g_{hZZ}^2 g_{XX}^2}{\Gamma_h} \longrightarrow \Gamma_h \propto \frac{g_{hZZ}^4}{\sigma_{Zh\to ZZ}}$$

Similar way but now use Higgs+1jet:

- 1. Measure inclusive cross section from reconstructed m_h
- **2.** Use existing measurements to constrain Γ_{H_2}
 - 1. boosted $h \rightarrow bb$
 - 2. W+h → bb
 - 3. W+h → WW

$$\Gamma_h \propto \frac{1}{\sigma(W+h \to WW)} \times \left(\sigma(gg \to h) \times \frac{\sigma(W+h \to \bar{b}b)}{\sigma(ggh \to \bar{b}b)}\right)^2$$

* See full math in backup

$$\Gamma_h \propto \frac{1}{\sigma(W+h \to WW)} \times \left(\sigma(gg \to h) \times \frac{\sigma(W+h \to \bar{b}b)}{\sigma(ggh \to \bar{b}b)} \right)^2$$

This talk is going to focus on how to measure this

Higgs + 1 jet topology

1. Assume LHC can trigger on jet p_T> 400 GeV

- 2. Tag Higgs jet for all decays
- **3**. Fit Higgs mass

12

* Assume decay products fall within jet cone
 * Focus on tagging visible Higgs decays
 * Will discuss H=>gg and semi-visible/invisible decays later

Jet substructure for Higgs

* Two-object symmetric decay for Higgs: τ₂₁?

Simple RNN of particles

- Take 4-momenta + particle-ID of jet constituents (up to first 20 ordered by p_T)
- Recurrent fully-supervised (GRU) + classifier layers

Higgs inclusive performance

15

For h=>anything GRU has the best performance
Use jet T₂₁ as a reference.

Higgs mass

Next step is to select Higgs jet and fit mass

ISR recoiling jet

- Visible decays: Higgs can be leading p_T jet in the event
 invisible decays: neutrino will take away energy
- ★ Take leading jet on (jet+neutrino).p_T instead.

Higgs mass

- Reconstruct Higgs mass as: (jet+neutrino).M()
 - Here "neutrino" = rough MET reconstruction
 - * Assume same direction as jet (take jet η/ϕ)
 - MET Regression improves slightly signal resolution

Fitting Higgs mass

Fitting reconstructed mass in bins of pT: [400-450],[450-500],[500-550],[550-inf]
 Consider 4 scenarios:

What the next plots show

Proj. 3000 fb⁻¹

What the next plots show

What the next plots show

*(i.e. for each decay channel show with $\delta(\sigma_{xs}/(\sigma_{SM}*BR))$ with $\mu = \sigma_{xs}/\sigma_{SM}$)

21

GRU + GRU DDT

 Un-decorrelated version (GRU) is MUCH more challenging (really hard to fit sculpted shape of QCD)

GRU + GRU DDT

Discussion

- * This is only a proof of concept <u>assuming Lorentz</u> invariance
- Where can model dependence come in?
 - * h=>gluons/h=>BSM that looks like bkg.: are the real challenge
 - h=>semi-visible decays:
 - Strategy for h(tau-tau/WW) works well => can be improved
 - h=>invisible & h=> long lived decays
 - Bounded by h->invisible (4% in VBF)

Signal efficiency measurement is an open question

Summary

- Proposal to measure inclusive Higgs at high-pT
 @ LHC
- Could constrain Γ_H at level comparable to onshell/off-shell measurements (δΓ_H ~0.8-2 MeV)
- Hope to initiate discussion on: boosted H(gg) tagging/ how to recover invisible/semi-visible H decays

More material

- 1. Measure $\sigma(gg \rightarrow h) \propto g_{gg}^2$ from reconstructed h mass.
- 2. Measure boosted $h \rightarrow bb$ $\sigma(ggh \rightarrow \bar{b}b) \propto \frac{g_{gg}^2 g_{\bar{b}b}^2}{\Gamma_b}$
- **3.** Measure W+h \rightarrow bb $\sigma(W + h \rightarrow \bar{b}b) \propto \frac{g_{WW}^2 g_{\bar{b}b}^2}{\Gamma_h}$

Take ratio: $\frac{\sigma(W + h \to \bar{b}b)}{\sigma(ggh \to \bar{b}b)} \propto \frac{g_{WW}^2}{g_{gg}^2}$ $\sigma(gg \to h) \times \frac{\sigma(W + h \to \bar{b}b)}{\sigma(ggh \to \bar{b}b)} \propto g_{WW}^2 (*)$

- 4. Measure W+h \rightarrow WW $\sigma(W + h \rightarrow WW) \propto \frac{g_{WW}^4}{\Gamma_h}$
- 5. Replace gww from (*)
- 6. Get total width:

$$\Gamma_h \propto \frac{1}{\sigma(W+h \to WW)} \times \left(\sigma(gg \to h) \times \frac{\sigma(W+h \to \bar{b}b)}{\sigma(ggh \to \bar{b}b)}\right)^2$$

Results & interpretation

Projections @ 13 TeV / 3ab⁻¹

$$\begin{split} \mu_{\Gamma} &= \mu_{ggh}^2 \frac{\mu_{Wh \to \bar{b}b}^2}{\mu_{ggh \to \bar{b}b}^2 \mu_{W+h \to WW}} \\ \delta\mu_{\Gamma}^2 &= 4\delta\mu_{ggh}^2 + \delta\mu_{W+h \to WW}^2 + 4\delta\mu_{W+h \to bb}^2 + 4\delta\mu_{ggh \to bb}^2 \end{split}$$

- How to get δΓ_H/Γ_{SM} @ 68%CL:
 - 1. Inclusive H: δµ_(ggh) (%) = XX ~ [0.05-0.1]
- <u>FTR-18-011</u>

29

- 2. Boosted h(bb) $\delta\mu_{(ggh->bb)}$ (%) ~ 0.25* $\delta\mu_{(ggh)}$
- 3. W+h(bb) $\delta\mu_{(W+h-bb)}$ (%) = 0.09
- 4. WBF+h(WW) $\delta\mu_{(W+h->WW)}$ (%) = 0.05

Final unc:

* δΓ_H/Γ_{SM} ~sqrt(0.05²+4*0.09²+4*(1+0.25²)*(XX²))

* range: [0.27-0.35]

Slope follows more conservative approach close to LHCXS WG

Cristina Mantilla Suarez (JHU) - BOOST 2019

Higgs mass

*

Next step is to select Higgs jet and fit mass
 Visible decays: Higgs is leading p_T jet in the event
 invisible decays: neutrino will take away energy
 Take leading jet on (jet+neutrino).p_T instead.

h(tautau) when taking leading p⊤ jet

 h(tautau) when taking leading jet on (jet+neutrino).pT

Higgs mass

- * Take the regressed MET and use jet η/ϕ
 - * WW/tau-tau: yields a pretty clear improvement in the mass distribution
 - For QCD and b-jets effect is small

Cristina Mantilla Suarez (JHU) - BOOST 2019

Minimizing bias against decay

Attempt to add adversarial to minimize bias against h decay.
Does not really work: i.e. performance reduces to h(gg)

34

Fit details

Systematics

- Systematics on W/Z/top normalization
- Shape systematics on W/Z/H
- * Backgrounds
 - * QCD estimate:
 - Template fit (optimistic approach)
 - Polynomial fit 4th order (# of parameters similar to current approaches e.g. CMS boosted H(bb))
 - Non-DDT versions are non-realistic...

h to gluons

- Are the real challenge
- Trained adversary to minimize bias against H decay
 brought sensitivity back to level of h=>gg

GGH only

For GRU, hgg comes from VH

 $h \rightarrow ZZ$

h→cc

 $h \rightarrow gg$

0

 $h \rightarrow inc$

 $h \rightarrow \overline{b}b$

 $h{\rightarrow}\,WW$

 $h \rightarrow \overline{\tau} \tau$

37

Just mass and GRU+Adv.

$Tau_{21}(WW/ZZ)$

Variation of the fit

GRU response

MET regression

Perform regression on MET.pT using kinematic inputs of jet/ MET/ECFs

Mass reconstruction

FH@ Muon Colliders

Muon collider: great resolution δΓ_H/Γ_{SM} ≈ 0.05
 Scan against collider energy sqrt(s):

FH@Electron Colliders

1. Measure $\sigma(e^+e^- \rightarrow Zh) \propto g_{hZZ}^2$ by tagging ZH and recoil mass:

2. Measure h→XX decay $\sigma_{Zh\to XX}$ $\sigma_{Zh\to XX} = \sigma(e^+e^- \to Zh) \times BR(h \to XX) \propto g_{hZZ}^2 \frac{g_{hXX}^2}{\Gamma_h}$ 3. Get total width: $\Gamma_h \propto g_{hZZ}^2 \frac{g_{hZZ}^2}{\sigma(e^+e^- \to Zh) \times BR(h \to ZZ)}$ $\propto \frac{g_{hZZ}^2}{BR(h \to ZZ)}$