

Massachusetts Institute of Technology

Joint work with Patrick Komiske, Radha Mastandrea, Preksha Naik, and Jesse Thaler

 $[1902.02346]$, to appear in PRL [19xx.xxxxx]

July 22, 2019

Exploring the Space of Jets

When are two jets similar?

Energy Mover's Distance

Quantifying Jet Similarity

Exploring the Space of Jets

When are two jets similar?

These two jets "look" similar, but have different numbers of particles, flavors, and locations. How do we quantify this?

The *energy flow* (distribution of energy) is the information that is robust to: fragmentation, hadronization, detector effects, … [\[N.A. Sveshnikov, F.V. Tkachov, 9512370\]](https://arxiv.org/abs/hep-ph/9512370)

[\[F.V. Tkachov, 9601308\]](https://arxiv.org/pdf/hep-ph/9601308.pdf) [\[P.S. Cherzor, N.A. Sveshnikov, 9710349\]](https://arxiv.org/abs/hep-ph/9710349)

Energy flow \Leftrightarrow Infrared and Collinear (IRC) Safe information

Outline

When are two jets similar?

When they have similar distributions of energy

Energy Mover's Distance

Quantifying Jet Similarity

Exploring the Space of Jets

Outline

When are two jets similar?

When they have similar distributions of energy

Energy Mover's Distance

Quantifying Jet Similarity

Exploring the Space of Jets

The Energy Mover's Distance *Review: The Earth Mover's Distance*

Earth Mover's Distance: the minimum "work" (stuff x distance) to rearrange one pile of dirt into another [\[Rubner, Tomasi, Guibas\]](https://link.springer.com/article/10.1023%2FA%3A1026543900054) [\[Peleg, Werman, Rom\]](https://ieeexplore.ieee.org/document/192468)

Metric on the space of (normalized) distributions: *symmetric, non-negative, triangle inequality*

Distributions are close in EMD \Leftrightarrow their expectation values are close.

Also known as the 1-Wasserstein metric.

The Energy Mover's Distance

From Earth to Energy

Energy Mover's Distance: the minimum "work" (energy x angle) to rearrange one *jet* (pile of energy) into another [\[Komiske, EMM, Thaler, 1902.02346\]](https://arxiv.org/abs/1902.02346)

The Energy Mover's Distance *From Earth to Energy*

[\[Komiske, EMM, Thaler, 1902.02346\]](https://arxiv.org/abs/1902.02346) **Energy Mover's Distance: the minimum "work" (energy x angle) to** rearrange one *event* (pile of energy) into another

 $\text{EMD}(\mathcal{E}, \mathcal{E}') + \text{EMD}(\mathcal{E}', \mathcal{E}'') \geq \text{EMD}(\mathcal{E}, \mathcal{E}'')$

EMD has dimensions of energy

True metric as long as $R \geq \frac{1}{2}$ $\frac{1}{2}\theta_{\text{max}}$ $R \ge$ the jet radius, for conical jets

Solvable via Optimal Transport problem.

~1ms to compute EMD for two jets with 100 particles.

The Energy Mover's Distance *From Earth to Energy*

[\[Komiske, EMM, Thaler, 1902.02346\]](https://arxiv.org/abs/1902.02346) **Energy Mover's Distance**: the minimum "work" (energy x angle) to rearrange one *event* (pile of energy) into another

Outline

When are two jets similar?

When they have similar distributions of energy

Energy Mover's Distance

The "work" to rearrange one jet into another

Quantifying Jet Similarity

Exploring the Space of Jets

Outline

When are two jets similar?

When they have similar distributions of energy

Energy Mover's Distance

The "work" to rearrange one jet into another

Quantifying Jet Similarity

Exploring the Space of Jets

Energy Moving and IRC Safety

Events close in EMD are close in any infrared and collinear safe observable!

Additive IRC-safe observables:

Energy Move Distance

 $\mathcal{O}(\mathcal{E}) = \sum_{i=1}^{n}$

 $i=1$

 \overline{M}

EMD ℇ, ℇ& ≥ 1)* ⁺ ^ℇ [−] ⁺ ℇ& 3/ Φ 65/ Difference in observable values e.g. 7 ≥ 1 jet angularities: "Lipschitz constant" of Φ i.e. bound on its derivative 8(:) ℇ − 8(:) ℇ& ≤ 7 EMD ℇ, ℇ& [\[Berger, Kucs, Sterman, 0303051\]](https://arxiv.org/abs/hep-ph/0303051) [\[Larkoski, Thaler, Waalewijn, 1408.3122\]](https://arxiv.org/abs/1408.3122) +

Old Observables in a New Language

 \boldsymbol{M}

N-subjettiness is the EMD between the event and the closest N-particle event.

$$
\tau_N^{(\beta)}(\mathcal{E}) = \min_{N \text{ axes}} \sum_{i=1}^{\infty} E_i \min \{ \theta_{1,i}^{\beta}, \theta_{2,i}^{\beta}, \dots, \theta_{N,i}^{\beta} \} \longrightarrow \tau_N(\mathcal{E}) = \min_{|\mathcal{E}'|=N} \text{EMD}(\mathcal{E}, \mathcal{E}').
$$

\n $\beta \ge 1$ is p-Wasserstein distance with $p = \beta$.

Geometry in the space of events

Thrust is the EMD between the event and two back-to-back particles.

$$
t(\mathcal{E}) = E - \max_{\hat{n}} \sum_{i} |\vec{p}_i \cdot \hat{n}| \qquad \longrightarrow \qquad t(\mathcal{E}) = \min_{|\mathcal{E}'|=2} \text{EMD}(\mathcal{E}, \mathcal{E}')
$$
\nwith $\theta_{ij} = \hat{n}_i \cdot \hat{n}_{j}$, $\hat{n} = \vec{p}/E$

Eric M. Metodiev, MIT **The Space of Collider Events** The Space of Collider Events And The Space of Collider Events

Quantifying Pileup and Detector Effects with EMD

EMD universally quantifies pileup and detector effects.

See extra slides for histograms. Can also quantify hadronization effects this way.

Eric M. Metodiev, MIT **17** No. 2014 The Space of Collider Events **Collision Collision Collision Collision** Collision

Outline

When are two jets similar?

When they have similar distributions of energy

Energy Mover's Distance

The "work" to rearrange one jet into another

Quantifying Jet Similarity

Geometry of the space of jets. Bounds for pileup, detector effects

Exploring the Space of Jets

Outline

When are two jets similar?

When they have similar distributions of energy

Energy Mover's Distance

The "work" to rearrange one jet into another

Quantifying Jet Similarity

Geometry of the space of jets. Bounds for pileup, detector effects

Exploring the Space of Jets

Most Representative Jets: K-medoids

Most Representative Jets: K-medoids

Towards Anomaly Detection More Typical More Anomalous Mean EMD to Dataset 0.05 Probability Density $[GeV^{-1}]$ 0.04 AK5 Jets, $|\eta^{\rm jet}| < 1.9$ $0.03\,$ $p_T^{\text{jet}} \in [375, 425] \text{ GeV}, \text{CHS}$ CMS 2011 Open Data **PRELIMINARY** 0.02 Complements recent developments in anomaly detection for collider physics. 0.01 [\[Collins, Howe, Nachman, 1805.02664\]](https://arxiv.org/abs/1805.02664) [\[Heimel, Kasieczka, Plehn, Thompson, 1808.08979\]](https://arxiv.org/abs/1808.08979) 0.00 [\[Farina, Nakai, Shih, 1808.08992\]](https://arxiv.org/abs/1808.08992) 50 70 130 170 190 90 110 150 [\[Cerri, Nguyen, Pierini, Spiropulu, Vlimant, 1811.10276\]](https://arxiv.org/abs/1811.10276) Mean EMD to Dataset [GeV]

Exploring the Space of Jets: Visualizing the Manifold

Visualize the space of events with t-Distributed Stochastic Neighbor Embedding (t-SNE).

[\[L. van der Maaten, G. Hinton\]](https://link.springer.com/article/10.1007%2Fs10994-011-5273-4)

Finds an embedding into a low-dimensional manifold that respects distances.

What does the space of jets look like?

Exploring the Space of Jets: Visualizing the Manifold

Outline

When are two jets similar?

When they have similar distributions of energy

Energy Mover's Distance

The "work" to rearrange one jet into another

Quantifying Jet Similarity

Geometry of the space of jets. Bounds for pileup, detector effects

Exploring the Space of Jets

New ways to visualize and probe jet data

Classification with EMD

Clustering sets of events

New observables through EMD geometry?

"Event" mover's distance between ensembles?

Include flavor information?

t-SNE Manifold Dimension 1

EnergyFlow

Docs » Home

Welcome to EnergyFlow

EnergyFlow is a Python package containing a suite of particle physics tools. Originally designed to compute Energy Flow Polynomials (EFPs), as of version 0.10.0 the package expanded to include implementations of Energy Flow Networks (EFNs) and Particle Flow Networks (PFNs). As of version 0.11.0, functions for facilitating the computation of the Energy Mover's Distance (EMD) on particle physics events are included. To summarize the main features:

- Energy Flow Polynomials: EFPs are a collection of jet substructure observables which form a complete linear basis of IRC-safe observables. EnergyFlow provides tools to compute EFPs on events for several energy and angular measures as well as custom measures.
- Energy Flow Networks: EFNs are infrared- and collinear-safe models designed for learning from collider events as unordered, variable-length sets of particles. EnergyFlow contains customizable Keras implementations of EFNs.
- Particle Flow Networks: PFNs are general models designed for learning from collider events as

Eric M. Metodiev, MIT **1988 Collider Events** 1988 Collider Events 1988 Collider Events 1988 Collider Events 1988

Search docs

Home

Welcome to EnergyFlow

EnergyFlow

- References
- Copyright
- **Getting Started**
- Installation
- **Demos**
- **Examples**
- **FAQs**
- **Release Notes**
- Documentation
- **Energy Flow Polynomials**
- Architectures
- **EMD**
- **Measures**
- Multigraph Generation
- **Utils**
- **Datasets**

CMS Open Data

opendata.cern.ch An amazing resource for physics exploration and proof-of-principle studies.

 \vee Get started \vee

CMS Open Data

Many exciting physics applications with the CMS Open Data already.

Exposing the QCD splitting function

[\[Tripathee, Xue, Larkoski, Marzani, Thaler, 1704.05842\]](https://arxiv.org/abs/1704.05842) [\[Larkoski, Marzani, Thaler, Tripathee, Xue, 1704.05066\]](https://arxiv.org/abs/1704.05066)

Looking for parity violation in jets

[\[Lester, Schott, 1904.11195\]](https://arxiv.org/abs/1904.11195)

Searching for dimuon resonances

[\[Cesarotti, Soreq, Strassler, Thaler, Xue, 1902.04222\]](https://arxiv.org/abs/1902.04222)

Analyzing collision data with deep learning techniques

[\[Madrazo, Cacha, Iglesias, de Lucas, 1708.07034\]](https://arxiv.org/abs/1708.07034)

[\[Andrews, Paulini, Gleyzer, Poczos, 1807.11916\]](https://arxiv.org/abs/1807.11916)

[\[Andrews, et al., 1902.08276\]](https://arxiv.org/abs/1902.08276)

Eric M. Metodiev, MIT **1988 Collider Events** 1988 Collider Events 1988 Collider Events 1988 Collider Events 1988

VOLUME 50, NUMBER 5

PHYSICAL REVIEW LETTERS

31 JANUARY 1983

Characterization of Strange Attractors

Peter Grassberger^(a) and Itamar Procaccia Chemical Physics Department, Weizmann Institute of Science, Rehovot 76100, Israel (Received 7 September 1982)

A new measure of strange attractors is introduced which offers a practical algorithm to determine their character from the time series of a single observable. The relation of this new measure to fractal dimension and information-theoretic entropy is discussed.

Intuition:

 $N_{\text{neighbouring}}(r) \propto r^{\text{dim}}$ points $r) \propto r^{\text{dim}}$ dim $(r) = r$

 $dim=1$

$dim=2$

Correlation dimension:

(eventually 0)

Quantifying Pileup and Detector Effects with EMD

Gen./Sim. EMD universally quantifies pileup mitigation and detector effects.

Eric M. Metodiev, MIT **1988 Collider Events** and The Space of Collider Events and The Space of Collider Events

Eric M. Metodiev, MIT **The Space of Collider Events** The Space of Collider Events And The Space of Collider Events

Jet Substructure Observables

Study jet substructure at truth and detector level.

 $m^2 = \left(\begin{array}{c} \ \ \end{array} \right)$ $i \in$ Jet p_i^{μ} \overline{c}

Similar to: [\[Larkoski, Marzani, Thaler, Tripathee, Xue, 1704.05066\]](https://arxiv.org/abs/1704.05066)

Eric M. Metodiev, MIT **1988 Collider Events** and The Space of Collider Events and The Space of Collider Events

QCD jets are simplest.

W jets are more complicated.

Top jets are most complex.

"Decays" have ~constant dimension.

QCD jets are simplest.

W jets are more complicated.

Top jets are most complex.

"Decays" have ~constant dimension.

Fragmentation becomes more complex at lower energy scales.

Hadronization becomes relevant at scales around 20 GeV.

Jet Kinematic Distributions

\overline{M} Quantifying event modifications: Hadronization $\lambda^{(\beta=1)} =$ $E_i \theta_i$ $i=1$ partons • hadrons 40 $1.0\,$ 10^{-2} $\lambda^{(\beta=1)} = 111.1 \text{GeV}$ $\lambda^{(\beta=1)} = 111.6 \text{GeV}$ **EMD:** QCD Jet Angularity PYTHIA 8.235, $\sqrt{s} = 14$ TeV $R = 1.0, p_T \in [500, 550]$ GeV $0.6\,$ Azimuthal Angle ϕ $0.2\,$ $\cdot 10^{-3}$ -0.2 $\frac{1}{2}$ 10⁻⁴ $-0.6\,$ EMD: 18.1 GeV $-1.0 +$ θ $0.6\,$ 0.2 $1.0\,$ $-1.0\,$ -0.6 -0.2 10 15 20 25 $30\,$ $35\,$ 40 $\overline{5}$ Ω Rapidity y Parton-Hadron EMD (GeV)

$$
\varepsilon = \varepsilon_{\text{partons}} \sqrt{\frac{|\lambda^{(\beta=1)}(\varepsilon) - \lambda^{(\beta=1)}(\varepsilon')|}{\varepsilon'}}
$$

Exploring the Space of Events: Jet Classification

Look at a jet's nearest neighbors (kNN) to predict its class.

Optimal IRC-safe classifier with enough data.

Nearing performance of ML.

Exploring the Space of Events

Use EMD as a measure of event similarity

Unsupervised clustering algorithms can be used to cluster events

> Jets are clusters of particles ???? are clusters of jets

VP Tree: O(log(N)) neighbor query time

Much more to explore.

Vantage Point (VP) Tree

Exploring the Space of Events: *W* jets

W jets are 2-pronged:

z: Energy Sharing of Prongs θ : Angle between Prongs φ : Azimuthal orientation

Constrained by *W* mass:

$$
z(1-z)\theta^2 = \frac{p_{\mu}^2}{p_T^2} = \frac{m_W^2}{p_T^2}
$$

Hence we expect a **two**-dimensional space of *W* jets.

After φ rotation: **one**-dimensional

Sketch of leading log (one emission) calculation:

$$
\dim_{q/g}(Q) = Q \frac{\partial}{\partial Q} \ln \sum_{i=1}^{N} \sum_{j=1}^{N} \Theta[\text{EMD}(\varepsilon_{i}, \varepsilon_{j}) < Q] \log \frac{1}{\tau} \left| \sum_{i \leq j \leq N} \sum_{i \leq j \leq N} \sum_{j=1}^{N} \sum_{j=1}^{N} \Theta[\text{EMD}(\varepsilon_{i}, \varepsilon_{j}) < Q] \log \frac{1}{\tau} \right| \left| \sum_{i \leq j \leq N} \sum_{j=1}^{N} \sum_{j=1}^{N} \sum_{j=1}^{N} \Theta[\text{EMD}(\varepsilon_{i}, \varepsilon_{j}) < Q] \log \frac{1}{\tau} \right| \log \frac{1}{\tau} \log \frac{1}{\tau}
$$
\n
$$
= Q \frac{\partial}{\partial Q} \ln \Pr\left[\lambda^{(\beta=1)} < Q; C_{q/g} \to 2 C_{q/g}\right]
$$
\n
$$
= Q \frac{\partial}{\partial Q} \ln \exp\left(-\frac{4\alpha_{S} C_{q/g}}{\pi} \ln^{2} \frac{Q}{p_{T}/2}\right)
$$
\n
$$
= -\frac{8\alpha_{S} C_{q/g}}{\pi} \ln \frac{Q}{p_{T}/2} \qquad C_{q} = C_{F} = \frac{4}{3}
$$
\n
$$
C_{q} = C_{A} = 3
$$
\n
$$
C_{q} = C_{A} = 3
$$
\n
$$
\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{j=1}
$$

When are two collider events similar?

How an event gets its shape: Experiment

Pileup Mitigation with PUMML

