Cutting Multiparticle Correlators Down to Size

Patrick T. Komiske III

Massachusetts Institute of Technology Center for Theoretical Physics

with Eric Metodiev and Jesse Thaler, to appear soon

BOOST 2019 - MIT

July 24, 2019

Sums of products of energies (transverse momenta) and angles

Ubiquitous observables at the LHC

 $\frac{1}{2}$

Definition of energy factor and pairwise angular distance

Ubiquitous observables at the LHC

Definition of energy factor and pairwise angular distance

$$\begin{aligned} \boldsymbol{z_i} &= \frac{p_{Ti}}{\sum_j p_{Tj}} \qquad \theta_{ij}^2 = 2n_i^{\mu} n_{j\mu} = 2\frac{p_i^{\mu}}{p_{Ti}} \frac{p_{\mu j}}{p_{Tj}} \simeq (y_i - y_j)^2 + (\phi_i - \phi_j)^2 \\ & \quad \text{central, narrow jet approximation} \end{aligned}$$

Energy Correlation Functions (ECFs) $\sum_{i_1=1}^{M} \cdots \sum_{i_N=1}^{M} z_{i_1} \cdots z_{i_N} \prod_{j < k} \theta_{i_j i_k}^{\beta}$

[Larkoski, Salam, Thaler, 1305.0007; Larkoski, Moult, Neill, 1409.6298]

Used for multi-prong tagging, typically in ratios , D_2 , C_2 , C_3 , etc.

Generalized ECFs also useful (angular part not monomial)

Ubiquitous observables at the LHC

 $\frac{1}{2}$

Energy Correlation Functions (ECFs) MM $\sum_{i_1=1} \cdots \sum_{i_N=1} z_{i_1} \cdots z_{i_N} \prod_{j < k} \theta_{i_j i_k}^{\beta}$

[Larkoski, Salam, Thaler, 1305.0007; Larkoski, Moult, Neill, 1409.6298]

Used for multi-prong tagging, typically in ratios , D_2 , C_2 , C_3 , etc.

Generalized ECFs also useful (angular part not monomial)

Mass $z_i z_j \theta_{ij}^2$

Definition of energy factor and pairwise angular distance

$$\boldsymbol{z_i} = \frac{p_{Ti}}{\sum_j p_{Tj}} \qquad \theta_{ij}^2 = 2n_i^{\mu} n_{j\mu} = 2\frac{p_i^{\mu}}{p_{Ti}} \frac{p_{\mu j}}{p_{Tj}} \simeq (y_i - y_j)^2 + (\phi_i - \phi_j)^2$$
central, narrow jet approximation

Linear basis of all IRC-safe observables

 $\mathcal{O} = \sum s_G \text{EFP}_G$

Ubiquitous observables at the LHC

 $\overline{2}$

 $\sum_{i_1=1}\cdots\sum_{i_N=1}z_i$

[Larkoski, Salam, Thaler, 1305.0007; Larkoski, Moult, Neill, 1409.6298]

Used for multi-prong tagging, typically in ratios , D_2 , C_2 , C_3 , etc.

Generalized ECFs also useful (angular part not monomial)

What else is O(M)?

Energy Correlation Functions (ECFs)
$$M \qquad M$$

$$i_1 \cdots z_{i_N} \prod_{j < k} \theta_{i_j i_k}^{\beta} \qquad \sum_{i_1 = 1} \cdots$$

M

[PTK, Metodiev, Thaler, 1712.07124]

 $(j,k) \in G$

 $\sum z_{i_1} \cdots z_{i_N} \qquad \qquad \theta_{i_j i_k}^{\beta}$

Linear basis of all IRC-safe observables

Energy Flow Polynomials (EFPs)

$$\mathcal{O} = \sum_G s_G \mathrm{EFP}_G$$

Definition of energy factor and pairwise angular distance

$$z_{i} = \frac{p_{Ti}}{\sum_{j} p_{Tj}} \qquad \theta_{ij}^{2} = 2n_{i}^{\mu}n_{j\mu} = 2\frac{p_{i}^{\mu}}{p_{Ti}}\frac{p_{\mu j}}{p_{Tj}} \simeq (y_{i} - y_{j})^{2} + (\phi_{i} - \phi_{j})^{2}$$
central, narrow jet approximation

 $i_N = 1$

Outline

Experiment

Computational Complexity

Multiparticle correlators are $\mathcal{O}(M^N)$ to compute in general Many can actually be computed in $\mathcal{O}(M)$

Linear Tensor Identities

Multiparticle correlators exhibit mysterious linear redundancies All redundancies understood via cutting graphs

Counting Superstring Amplitudes

Counting independent kinematic polynomials difficult Immediate enumeration through multigraphs

Theory

Naive computation complexity of an energy correlator is $\mathcal{O}(M^N)$

EnergyCorrelator fjcontrib solution:

Naive computation complexity of an energy correlator is $\mathcal{O}(M^N)$

EnergyCorrelator fjcontrib solution:

Naive computation complexity of an energy correlator is $\mathcal{O}(M^N)$

EnergyCorrelator fjcontrib solution:

 $\chi = N$ iff G is complete graph, ECFs still slow

[PTK, Metodiev, Thaler, <u>1712.07124</u>]

BOOST 2019

Can we do better – perhaps $\mathcal{O}(M)$ as for mass?

 $\chi = N$ iff G is complete graph, ECFs still slow

[PTK, Metodiev, Thaler, <u>1712.07124</u>]

 $\theta_{ij} = \sqrt{2n_i^{\mu}n_{j\mu}} \quad \beta = 2 \text{ removes square root}$

Factors of n_i^{μ} can be organized in optimal way

 $\theta_{ij} = \sqrt{2n_i^{\mu}n_{j\mu}} \quad \beta = 2 \text{ removes square root}$

Factors of n_i^{μ} can be organized in optimal way

EFMs result from cutting edges of EFP graph

 $\theta_{ij} = \sqrt{2n_i^{\mu}n_{j\mu}} \quad \beta = 2 \text{ removes square root}$

Factors of n_i^{μ} can be organized in optimal way

EFMs result from cutting edges of EFP graph

EFP

contractions of EFMs

 $\theta_{ij} = \sqrt{2n_i^{\mu}n_{j\mu}}$ $\beta = 2$ removes square root

Factors of n_i^{μ} can be organized in optimal way

 $\mathcal{I}_{\alpha\beta}^{\epsilon}$

EFMs result from cutting edges of EFP graph

See detailed derivation in backup

Patrick Komiske – Cutting Multiparticle Correlators Down to Size

 $\tau_{\alpha\beta\gamma\delta}$

Linear redundancies among EFPs are troublesome

Studying coefficients of linear fit difficult

$$\mathcal{O} = \sum_{G} s_G \text{EFP}_G$$

Examples of redundancies

in 3 or fewer spacetime dimensions

Linear redundancies among EFPs are troublesome

Studying coefficients of linear fit difficult

$$\mathcal{O} = \sum_{G} s_G \text{EFP}_G$$

Examples of redundancies

in 3 or fewer spacetime dimensions

Tensor Identity Recipe

Consider tensor over *n* dimensional vector space

Antisymmetrize *m* > *n* indices

Result is zero because any assignment of n possible values to m slots has a repetition

$$T^{a_1\cdots a_k}_{b_1\cdots b_\ell[c_1\cdots c_m]} = 0$$

Bonus: all tensor identities up to ones governed by existing symmetries take above form [Sneddon, Journal of Mathematical Physics]

Linear redundancies among EFPs are troublesome

Studying coefficients of linear fit difficult

$$\mathcal{O} = \sum_G s_G \mathrm{EFP}_G$$

 $0 = 2 \bullet - \left(\right) \left(\right) \quad \iff \quad 0 = \mathcal{I}^{\beta}_{[\alpha} \mathcal{I}^{\gamma}_{\beta} \mathcal{I}^{\delta}_{\gamma} \mathcal{I}^{\alpha}_{\delta]}$

 $0 = 6 - 12 + 6 \left[\left(\right) + 4 \right] - 2 \left[-3 \right] - 3 \left[\right]$

Examples of redundancies

in 3 or fewer spacetime dimensions

Tensor Identity Recipe

Consider tensor over *n* dimensional vector space

Antisymmetrize m > n indices

Result is zero because any assignment of n possible values to m slots has a repetition

$$T^{a_1\cdots a_k}_{b_1\cdots b_\ell[c_1\cdots c_m]} = 0$$

Bonus: all tensor identities up to ones governed by existing symmetries take above form [Sneddon, Journal of Mathematical Physics]

 $\iff 0 = \mathcal{I}_{[\alpha} \mathcal{I}^{\alpha}_{\beta} \mathcal{I}^{\beta}_{\gamma} \mathcal{I}^{\gamma}_{\delta]} \mathcal{I}^{\delta}$

Linear redundancies among EFPs are troublesome

Studying coefficients of linear fit difficult

$$\mathcal{O} = \sum_G s_G \mathrm{EFP}_G$$

 $\left(\begin{array}{c} \longleftrightarrow \quad 0 = \mathcal{I}^{\beta}_{[\alpha} \mathcal{I}^{\gamma}_{\beta} \mathcal{I}^{\delta}_{\gamma} \mathcal{I}^{\alpha}_{\delta]} \end{array}\right)$

 $0 = 6 - 12 + 6 \left(\right) + 4 - 2 \left(-3 \right)$

 $0 = 6 - 5 \left(\right) \quad \Longleftrightarrow \quad 0 = \mathcal{I}^{\beta}_{[\alpha} \mathcal{I}^{\gamma}_{\beta} \mathcal{I}^{\delta}_{\delta} \mathcal{I}^{\epsilon}_{\epsilon]}$

Examples of redundancies

in 3 or fewer spacetime dimensions

0 = 2

Tensor Identity Recipe

Consider tensor over n dimensional vector space

Antisymmetrize m > n indices

Result is zero because any assignment of npossible values to m slots has a repetition

$$T^{a_1\cdots a_k}_{b_1\cdots b_\ell[c_1\cdots c_m]} = 0$$

Bonus: all tensor identities up to ones governed by existing symmetries take above form [Sneddon, Journal of Mathematical Physics]

$$\longleftrightarrow \quad 0 = \mathcal{I}_{[\alpha} \mathcal{I}^{\alpha}_{\beta} \mathcal{I}^{\beta}_{\gamma} \mathcal{I}^{\gamma}_{\delta]} \mathcal{I}^{\delta}$$

Other types of identities – e.g. when *M* is small

$$0 = \sqrt{-2} \sqrt{, 0} = 2 \sqrt{-1}$$

$$M \le 2$$

$$0 = \sqrt{-1} + \sqrt{-1}$$
Could be useful in a partonic calculation, more in backup 7

Patrick Komiske – Cutting Multiparticle Correlators Down to Size

Counting Superstring Amplitudes

Constructing a basis of amplitudes – how large is it? [Boels, 1304.7918; OEIS A226919]

non-isomorphic multigraph

 $\cdot n_j$

Q:What is the number of symmetric polynomials of degree d in kinematic variables $s_{ij} = p_i \cdot p_j$ up to momentum conservation?

A: Same as the number of non-isomorphic multigraphs with no leaves (vertices of valency one)

Counting Superstring Amplitudes

Constructing a basis of amplitudes – how large is it? [Boels, 1304.7918; OEIS A226919]

A: Same as the number of non-isomorphic multigraphs with no leaves (vertices of valency one)

New OEIS Entries! A307317, A307316

[PTK, Metodiev, Thaler, to appear soon]

		<u> </u>
	Leafless Multigraphs	
	Connected	All
Edges d	A307317	A307316
1	0	0
2	1	1
3	2	2
4	4	5
5	9	11
6	26	34
7	68	87
8	217	279
9	718	897
10	2553	3129
11	$\mathbf{9574}$	11458
12	38005	44576
13	157306	181071
14	679682	770237
15	3047699	3407332
16	14150278	15641159

Bolded values previously unknown

Summary

Computational Complexity

Multiparticle correlators are $\mathcal{O}(M^N)$ to compute in general $\beta = 2$ EFPs can be computed in $\mathcal{O}(M)$ Why not use $D_2^{(\beta=2)}$? Performance in backup

Linear Tensor Identities

Multiparticle correlators exhibit mysterious linear redundancies All redundancies understood via cutting graphs and applying master antisymmetrization identity

Counting Superstring Amplitudes

Counting independent kinematic polynomials difficult Immediate enumeration through multigraphs and new OEIS sequences!

Theory

Rewriting General EFP as Contraction of EFMs

TL;DR – edges of EFP with $\beta = 2$ can be cut and rearranged into EFMs

Two-Prong Classification with Varying β

 $\beta = 2$ for both D_2 and C_2 for both Pythia 8 and Herwig++ works better than $\beta = 1$ for Z vs. QCD

Additional Linear Identities

All identities fundamentally due to antisymmetrizing over more indices than dimensions

Patrick Komiske – Cutting Multiparticle Correlators Down to Size

Euclidean subslicing $-e^+e^-$ only

$$e^+e^-: n_i^\mu = (1, \hat{n})^\mu$$

Presence of 1 means that d dim. tensors are exactly related to d - 1 dim tensors and hence satisfy more identities

ex. – holds in
$$d \leq 4$$
 for e^+e^-

$$0 = 6 - 16 - 3 \left(\left(\right) + 24 \right) - 16,$$

$$0 = 6 - 12 - 3 \left(\left(\right) - 2 \right) + 12 + 6 \left(\right) - 8 \right],$$

$$0 = 6 + 16 - 3 \left(\left(\right) - 48 \right) + 24 \left(\right) \right],$$

$$0 = 6 - 12 - 3 \left(\left(\right) - 2 \right) + 4 + 6 \left(\right) \right].$$

Additional Linear Relation Material

Patrick Komiske – Cutting Multiparticle Correlators Down to Size