CMS Searches With Boosted Top Quarks

Reyer Band University of California, Davis On Behalf of the CMS Collaboration

11th BOOST 2019

25 July 2019

CMS Searches With Boosted Top Quarks... Using Deep Neural Networks?

Reyer Band University of California, Davis On Behalf of the CMS Collaboration

11th BOOST 2019

25 July 2019

Boosted Tops At CMS

Many theories of new physics contain heavy particles which couple to top quarks

- A few recent results from CMS:
 - Vector-Like Quark Pair Production
 - A Search For Top Superpartners

For other CMS results, see <u>Christine's talk</u> from BOOST18

Ĩī - Signal

SUS-19-009

- SUSY top super partner t̃ may decay to a top quark
- Look for events with a single lepton from a W, itself either from a top or chargino
- MET expected from neutralino and leptonic W

ĨĨ - Signal

 t_1

SUS-19-009

b

 $\widetilde{\chi}_1^{\dagger}$

 $\widetilde{\chi}_1^-$

- SUSY top super partner t̃ may decay to a top quark
- Look for events with a single lepton from a W, itself either from a top or chargino

t1

h

 χ_1

 W^+

 $\widetilde{\chi}_1^0$

 $\widetilde{\chi}_1^0$

MET expected from neutralino and leptonic W

 $\widetilde{\chi}_1^0$

- Hadronic decay of the top a key signature in two decay modes
 - If $m_{\tilde{t}} >> m_{\tilde{x}} + m_t$ ("uncompressed"), top quarks will be boosted
 - If not boosted, identify the resolved jets.
- Search performed in the full Run 2 dataset (137 fb⁻¹)

$\tilde{t}\tilde{t}$ - Top Tagging

- Tag tops as either **merged** or **resolved**, boost depends on mass splitting
- Resolved:
 - Must be at least 3 (AK4) jets
 - Tag with DeepResolved network trained on jet quantities and trijet variables

$\tilde{t}\tilde{t}$ - Top Tagging

- Tag tops as either merged or resolved, boost depends on mass splitting
- Resolved:
 - Must be at least 3 (AK4) jets
 - Tag with DeepResolved network trained on jet quantities and trijet variables
- Merged:
 - Heavily boosted top quark identified as one AK8 jet
 - Tag with DeepAK8 network. See <u>Meenakshi Narain's talk</u> for all the details
- First search to make use of these neural networks

$\tilde{t}\tilde{t}$ - Background

- Lost lepton from dilepton event
 - Mostly from tt->2l
 - Measure transfer factor in MC by inverting lepton veto (right)

Events / 25 GeV

10

1

300

400

500

- Reduced by t_{mod}
- W lepton (besides top)
 - W+Jets, WW with 1 lepton
 - Genuine MET from neutrino
- tī semi-leptonic
 - High M_T requirement kills this background
 - Predicted from simulation
- ► Z->MET
 - Produced with W or tt
 - May have actual hadronic top

<u>SUS-19-009</u>

\tilde{t} - t_{mod}: Modified topness

<u>137 fb⁻¹ (13 TeV)</u> \blacktriangleright χ^2 -like variable

- ▶ tt̄->2l system with missing lepton
 - Missing neutrino and a W
 - System under-constrained

• Expect low S (or t_{mod}) from $t\bar{t}$ and high from signal

<u>SUS-19-009</u>

$$t_{\rm mod} = \ln(\min S)$$

$\tilde{t}\tilde{t}$ - Results

SUS-19-009

$\tilde{t}\tilde{t}$ - Results

$\tilde{t}\tilde{t}$ - Results

SUS-19-009

VLQ - Strategy

- Vector-like quarks (VLQs) are not constrained by observed Higgs production cross section
 - Left- and right-handed components transform equally under SU(2) ('vectorlike')
 - Consider pair production in all-hadronic final states
- Two searches performed with different tagging approaches:
 - One targeting T->bW decay
 - One targeting all modes, utilizing a novel neural net based tagger: "Boosted Event Shape Tagger" (BEST)
- Perform these searches in the 2016 dataset (35.9 fb⁻¹)

B2G-18-005

VLQ - BEST Procedure

- Hypothesize different particles as origin of jet: top, H, Z, W
 - Jet constituents should be isotropic in the rest frame of that particle
 - Use particle masses to apply different boosts to jet constituents
 - In each reference frame, calculate event shape variables

- Also use some lab frame inputs, such as soft drop mass and CSV
- Six possible classifications:
 t, W, Z, H, b, light [u/d/s/c/g]

VLQ - BEST Inputs

- Longitudinal Asymmetry momentum balance along jet axis in rest frame
 - Balanced momentum ($A_L = 0$) more likely in correct frame
 - Calculate value in each frame

<u>B2G-18-005</u>

VLQ - BEST Inputs

- Longitudinal Asymmetry momentum balance along jet axis in rest frame
 - Balanced momentum ($A_L = 0$) more likely in correct frame
 - Calculate value in each frame

- Soft Drop Mass Well known variable for identifying jets from heavy objects
 - Small cut on $m_{SD} > 10$ GeV to reduce light background

VLQ - BEST Performance

<u>B2G-18-005</u>

- Train fully connected deep neural network on 500K simulated jets
 - Require jets with $p_T > 500$ GeV, to ensure decay products are fully merged
- Achieve good discrimination between particle types
- Tagging rates found to be close to simulation

VLQ - Event Selection

- Neural Net-based analysis signal regions include exactly 4 jets
 - Count multiplicities of objects according to BEST classification
 - Unique set of (N_t, N_H, N_W, N_Z, N_b, N_j), sum of the N_i = 4
 - 126 independent signal regions

VLQ - Event Selection

<u>B2G-18-005</u>

- Neural Net-based analysis signal regions include exactly 4 jets
 - Count multiplicities of objects according to BEST classification
 - Unique set of (N_t, N_H, N_W, N_Z, N_b, N_j), sum of the N_i = 4

126 independent signal regions

- Cut-based analysis counts multiplicities of W, b tags, requiring > 1 of each tag
- Tag W jets via cuts on Soft Drop Mass and τ₂₁
- Tag b jets with cuts on CSV discriminant
- 4 independent signal regions

 In both analyses, use H_T distribution to discriminate signal from background

VLQ - Background Estimate

<u>B2G-18-005</u>

- Dominant background is QCD
 - Estimate this from observed data
- Cut-based analysis uses ABCD method
 - ▶ H_T, VLQ mass difference sideband
- NN-based analysis measures a tagging rate in independent 3 jet sample
 - 3-jet events entirely QCD
 - Apply rates to whole 4-jet sample to get QCD distribution per category
 - Other backgrounds taken from simulation: W+jets, tt

VLQ Results — TT Limits By Branching Fraction

- Scan limits over the branching fractions of the VLQ
 - BEST sensitive to T->tH and T->tZ

B2G-18-005

VLQ Results — TT Limits By Branching Fraction

- Scan limits over the branching fractions of the VLQ
 - Cut-based analysis performs better in T->bW corner

B2G-18-005

Summary

- Several new searches by CMS using boosted tops have been presented
 - Both make use of new tagging techniques based on deep neural nets
 - More advances in this field being made, look forward to even more results at the next BOOST conference!
- See <u>Meenakshi Narain's talk</u> from this conference for more information on CMS tagging techniques featuring top quarks

Vector-like quark pair production

Backup Material

SUS - Pre-selection

- Require exactly one isolated lepton
- \blacktriangleright Veto extra isolated leptons with $p_T > 5 \; GeV$
- Veto tracks (potentially from taus) with $p_T > 10 \text{ GeV}$
- Medium b-tag requirement (special soft >20 GeV tag for compressed spectra)
- ▶ M_T > 150
- MET > 250, with a separation from leading jets $\Delta \Phi$ > 0.8 (0.5 for compressed)
- At least 2 AK4 jets

SUS - Signal Regions

<u>SUS-19-009</u>

- Uncompressed spectra:
 - $m_{\tilde{t}} > m_t + m_\chi$
 - Split categories by:
 - Number of jets

Uncompressed

- ► t_{mod}
- ► M_{lb}
- ► MET
- 39 categories

- Compressed spectra:
 - $m_{\tilde{t}} \sim m_t + m_\chi \text{ or } \sim m_W + m_b + m_\chi$
 - Softer b jets
 - Leading jet from ISR
 - ▶ Veto high p_T lepton
 - Split by MET bin
 - Number of jets: 3 or 5
 - 10 categories

Compressed

Label	N_{J}	t _{mod}	$M_{\ell b}$	top tagging	$E_{\rm T}^{\rm miss}$ bins	Compressed spectra with $\Delta m (\tilde{t}, \tilde{x}^0)$, $m (label; I)$			
	·		[GeV]	category	[GeV]	Compr	essed spectra with $\Delta m(t, \chi_1^*) \sim m_t$ (label: 1)	-	
A0				_	$[600, 750, +\infty]$		$N_{\rm I} > 5$, leading- $p_{\rm T}$ jet not b-tagged,		
A1	2 2	> 10	< 175	U	[350, 450, 600]	Coloction emitoria	$\vec{J} = \vec{J} + $		
A2	2-3	≥ 10		Μ	[250, 600]		$p_{\mathrm{T}}^{\ell} < \max\left(50, 250 - 100 \times \Delta\phi(E_{\mathrm{T}}^{\mathrm{muss}}, \vec{p}_{\mathrm{T}}^{\ell})\right) \text{ GeV},$		
В			≥ 175	_	$[250, 450, 700, +\infty]$				
С		< 0	< 175	_	$[350, 450, 550, 650, 800, +\infty]$	$E_{\rm T}^{\rm Huss}$ bins [GeV]	250-350, 350-450, 450-550, 550-750, > 750	\square	
D		< 0	≥ 175	_	$[250, 350, 450, 600, +\infty]$	Compressed spectra with $\Lambda m(\tilde{t} \ \tilde{\gamma}^0) \sim m_{\rm W}$ (label: I)			
E0				_	[450, 600, +∞]	Compre	$(t,\chi_1) \sim m_W$ (label.))	\neg	
E1			< 175	U	[250, 350, 450]		$N_{\rm I} \geq 3$, leading- $p_{\rm T}$ jet not b-tagged,		
E2	$2 \\ 3 \\ 2 \\ 0 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	0–10	< 175	Μ	[250, 350, 450]	Selection criteria	(= (= 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2		
E3				R	[250, 350, 450]		$p_{\mathrm{T}}^{\epsilon} < \max\left(50, 250 - 100 \times \Delta\phi(E_{\mathrm{T}}^{\mathrm{Huss}}, p_{\mathrm{T}}^{\epsilon})\right) \text{ GeV},$,	
\mathbf{F}			≥ 175	_	$[250, 350, 450, +\infty]$	Emiss hime [CoV]	250 250 250 450 450 550 550 750 > 750		
G0			< 175	_	$[450, 550, 750, +\infty]$	L _T ^{mass} bins [Gev]	230-330, 330-430, 430-330, 330-730, >730		
G1				U	[250, 350, 450]				
G2		≥ 10		Μ	[250, 350, 450]				
G3				R	[250, 350, 450]				
Η			≥ 175	_	[250, 500, +∞]			28	

SUS - M_{Ib}

 Violated by backgrounds from other processes, like W+jets, and other signal channels

SUS - Control Regions

- Control region samples used for the background estimation
- MET distribution used for the dilepton transfer factor
 - Require presence of a second isolated lepton with $p_T > 10 \text{ GeV}$
 - \blacktriangleright Add trailing lepton p_T to the MET
- W+jets estimated from the 0b control region
 - \blacktriangleright The "b" jet used for M_{lb} distribution is jet with highest deepCSV value

SUS - Systematics

Source	Signal	Lost lepton	1ℓ background	$Z ightarrow u ar{ u}$
Data statistical uncertainty		5-50%	4-30%	
Simulation statistical uncertainty	6–36%	3-68%	5-70%	4–41%
$t\bar{t} E_T^{miss}$ modeling		3–50%		
QCD scales	1–5%	0–3%	2–5%	1–40%
Parton distribution		0–4%	1-8%	1–12%
Pileup	1–5%	1-8%	0–5%	0–7%
Luminosity	2.3–2.5%			2.3-2.5%
W + b cross section			20-40%	
$Z \rightarrow \nu \nu$ estimate				5–10%
System recoil (ISR)	1–13%	0–3%		—
Jet energy scale	2–24%	1–16%	1–34%	1–28%
$E_{\rm T}^{\rm miss}$ resolution		1–10%	1–5%	—
Trigger	2–3%	1–3%		2–3%
Lepton efficiency	3–4%	2–12%		1–2%
Merged top tagging efficiency	3–6%			5–10%
Resolved top tagging efficiency	5–6%			3–5%
b tagging efficiency	0–2%	0–1%	1–7%	1–10%
Soft b tagging efficiency	2–3%	0–1%	0–1%	0–5%

DeepAK8+BEST Performance In Simulation

DeepAK8 Top Tagging Validation

BEST Top Tagging Validation

VLQ - Event Selection - Cut Based

- Use tagging multiplicities of W's and b's to define signal regions 2W1b 2W0b 2W2b Suppress background by requiring multiple W/b tags and high hadronic activity: 1W0b 1W1b 1W2b • $H_T > 1200$ GeV, where H_T is the scalar sum of all jet's transverse momenta 0W1b 0W0b 0W2b• **Signal** requires > 0 of each tag. Signal-poor areas used for validating multijet QCD = 0 W tags, any b tags:
- background estimation
- Sideband used to extract a normalization scale factor

> 0 W tags, = 0 b tags: Sideband Regions

Validation Regions

> 0 W tags, > 0 b tags: Signal Regions.

VLQ - Cut-Based Final Distributions

• Final signal regions for cut-based analysis (post-fit).

VLQ - BEST - Signal Region Summary

► 126 signal regions, summarized here by inclusive BEST tag categories. ≥ 10³ 10⁴ 10³ Events / GeV CMS CMS Multijet (DD) Multijet (DD) Observed Observed tī+jets W+jets tī+jets W+jets Z+jets ttV+tttt H VV — TT (1.2 TeV) Z+jets ttV+tttt H VV — TT (1.2 TeV) Events / 0 NN analysis Inclusive NN analysis ≥1 W jet TT (0.8 TeV) _____ TT (0.8 TeV) BG Statistical Error — TT (1.6 TeV) 10 _____ TT (1.6 TeV) BG Statistical Error 10 10 10-10-10-2 10-3 10-10-10 Data / BG ß 1.5 Data 0.5 0.5 °Ö 2000 3000 4000 5000 6000 8000 9000 10000 00 1000 2000 3000 4000 5000 6000 8000 9000 7000 7000 10000 1000 AK8 H_T [GeV] AK8 H_T [GeV] 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) 200 200 200 200 Events / GeV CMS Multijet (DD) CMS Multijet (DD) 10 Observed Observed tī+jets W+jets tt+jets W+jets Z+jets tīV+tītī Z+jets tīV+tītī H Events / (H 10² NN analysis ≥1 Z jet NN analysis VV VV VV — TT (1.2 TeV) BG Statistical Error VV — TT (1.2 TeV) BG Statistical Error TT (0.8 TeV) ≥1 H jeť TT (0.8 TeV) TT (1.6 TeV) 10 ____ TT (1.6 TeV) 10-10 10-2 10-2 10-10-10 10-BG ß 1.5 1.5 Data / Data 0.5 0.5 °0 0 2000 3000 4000 5000 6000 7000 8000 9000 10000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 1000 AK8 H_T [GeV] AK8 H_T [GeV] 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) >^{10⁴} 9 10³ GeV CMS Multijet (DD) CMS Multijet (DD) Observed Observed 10⁵ tī+jets W+jets tī+jets W+jets NN analysis study 10² ≥1 t jet H Z+iets H Z+jets VV TT (1.2 TeV) BG Statistical Error NN analysis ≥1 b jet Events / tīV+tītī tīV+tītī vv VV — TT (1.2 TeV) BG Statistical Error TT (0.8 TeV) _____ TT (0.8 TeV) _____ TT (1.6 TeV) — TT (1.6 TeV) 10-10 10-2 10^{-2} 10-3 10 10 10-/BG ß 1.5 1.5 Data Data 0.5 0.5 °ď 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 °0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

AK8 H_T [GeV]

AK8 H_T [GeV]

37

VLQ - BEST Architecture

- Feed-forward deep neural network with 3 hidden layers, 40 nodes each.
- Multi classification algorithm with six outputs.
- Node with highest output determines the jet label.
- ▶ 59 input features, 500,000 jets used to train the network.
- Use samples of high-pT boosted SM particles from high-mass resonance decays for training
 - ► Z'→tt, RSG->HH, etc.

DeepAK8 (Merged Tagger) Structure

- Trained on 40 million jets
- First 100 reconstructed particles in a jet used as inputs
 - 42 features per particle, such as basic kinematics, tracking info
- Up to 7 secondary vertices fed into parallel CNN
 - ▶ 15 features per SV, including displacement and quality
- Both CNNs are fed into one fully connected layer
- Discriminate between decay modes of heavy objects

VLQ - BEST Variable List

NN Input Quantities					
Sphericity (t, W, Z, H)	Jet Soft-Drop Mass				
lsotropy (t, W, Z, H)	Jet ŋ				
Aplanarity (t, W, Z, H)	Jet T ₂₁				
Thrust (t, W, Z, H)	Jet T ₃₂				
Jet Asymmetry A _L (t, W, Z, H)	Jet Charge				
Fox-Wolfram H ₁ /H ₀ (t, W, Z, H)	Maximum Subjet CSV Value				
Fox-Wolfram H ₂ /H ₀ (t, W, Z, H)	Subjet 1 CSV Value				
Fox-Wolfram H ₃ /H ₀ (t, W, Z, H)	Subjet 2 CSV Value				
Fox-Wolfram H ₄ /H ₀ (t, W, Z, H)	m ₁₃ (t,W,Z,H)				
m ₁₂ (t,W,Z,H)	m ₁₂₃₄ (t,W,Z,H)				
m ₂₃ (t,W,Z,H)					

VLQ - Systematic Uncertainties

Uncertainty	Contribution to:			
Source	Uncertainty	Cut-based	NN	Applies to samples:
Diboson cross section	50%		\checkmark	VV only
Rare top quark process cross sections	50%		\checkmark	tīV, tītī
Higgs boson cross section	50%		\checkmark	H only
W+jets cross section	15%	\checkmark	\checkmark	W+jets only
Z+jets cross section	15%		\checkmark	Z+jets only
Integrated luminosity measurement	2.5%	\checkmark	\checkmark	All simulation
Pileup reweighting	$\pm 1\sigma$	\checkmark	\checkmark	All simulation
Jet energy scale	$\pm 1\sigma(p_{\rm T},\eta)$	\checkmark	\checkmark	All simulation
Jet energy resolution	$\pm 1\sigma(\eta)$	\checkmark	\checkmark	All simulation
Parton distribution functions	$\pm 1\sigma$	\checkmark	\checkmark	t ī , VLQ
Renormalization and factorization scales	$\pm 1\sigma$	\checkmark	\checkmark	t ī , VLQ
CSVv2 discriminant reshaping	δ (wgt., unwgt.)		\checkmark	All simulation
BEST classification fractions	$\pm 1\sigma(p_{\rm T})$		\checkmark	QCD multijet
BEST classification scale factor	5%		\checkmark	All simulation
BEST misclassification scale factor	5%		\checkmark	All simulation
Trigger	2%	\checkmark		All simulation
W tag scale factor	$\pm 1\sigma$	\checkmark		All simulation
Soft drop jet mass scale	$\pm 1\sigma$	\checkmark		All simulation
Soft drop jet mass resolution	$\pm 1\sigma$	\checkmark		All simulation
b tag scale factor	$\pm 1\sigma$	\checkmark		All simulation
Extrapolation fit	$\pm 1\sigma$	\checkmark		Background from data
Normalization of 1Wbackground prediction	1.9%	\checkmark		Background from data
Normalization of 2Wbackground prediction	1.1%	\checkmark		Background from data

Boosted VLQ - Substructure Variables W/Z jet

Tagging Boosted Jets

Heavy object (e.g. W boson) decays to two quarks

- If W is sufficiently boosted, resulting jets will overlap, appearing as 1 jet
- Can identify decays of heavy objects from typical light jets by mass and composite structure

"Soft Drop" Mass

Remove contribution of soft radiation to jet mass. Resulting dist. is centered on original particle mass. **Cut-based**: Require mass in the range [65, 105] GeV. One of the most sensitive variables in the NN as well

101

N-subjettiness: " τ_N "

A measure of consistency with N subjets.

 τ_{300}^{-1} Cut on the ratio of τ_{N} to τ_{N-1}^{-1} GeV) **Cut-based**: For W jet tagging, $\tau_{21} < 0.55$

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \left\{ \Delta R_{1,k}, \Delta R_{2,k}, \cdots, \Delta R_{N,k} \right\}$$

VLQ Results — BB Limits Expected

VLQ Results — BB Limits By Branching Fraction

- Scan limits over the branching fractions of the VLQ
 - ▶ BEST sensitive to B->tW, B->bZ and B->bH covered by other analysis

B2G-18-005

Summary Of Limits on Production of Single VLQs

Vector-like quark single production