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Is there life beyond the SM Higgs?

The minimal Higgs sector of the SM is overstretched. As a result:

does not explain fermion masses and mixing, neutrino masses, CP-violation;

has boring flavor properties: no tree-level FCNCs;

does not help explain DM or baryon asymmetry.

These issues can be successfully addressed in models with extended scalar sectors.

A conservative but rich class of models: N-Higgs-doublet models (NHDMs).

2HDM has been our playground for decades, time to move on!

Igor Ivanov (CFTP, IST) Basis-invariant methods for 3HDM HPNP2019, Osaka 3/24
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3HDM

What’s new in 3HDM compared to 2HDM:

richer pheno (both scalar and fermion sectors);

combining nice features of 2HDM, e.g. NFC + CPV [Weinberg, 1976;
Branco, 1979], scalar DM + CPV [Grzadkowski et al, 2009];

new options for CP violation, e.g. geometrical CPV [Branco, Gerard,
Grimus, 1984],

CP symmetry of order 4 (CP4) [Ivanov, Silva, 2015]:

mass degeneracy, CP eigenstates beyond CP-even/odd [Ivanov, Silva,
2015; Haber et al, 2018];
DM stabilized by CP4: [Koepke, 2018; Ivanov, Laletin, 2018];
quark/neutrino patterns from CP4: [Ferreira et al, 2017; Ivanov, 2018];
solution to strong CP problem: [Cherchiglia, Nishi, 2019].

symmetries, lots of symmetries in the 3HDM scalar sector!
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Symmetries in 3HDM

Particular examples of 3HDMs with symmetries begin in 1970’s;

full classification only recently.

abelian groups: [Ferreira, Silva, 1012.2874; Ivanov, Keus, Vdovin,
1112.1660]

Z2, Z3, Z4, Z2 × Z2, U(1), U(1)× Z2, U(1)× U(1) .

discrete non-abelian groups: [Ivanov, Vdovin, 1210.6553]

S3, D4, A4, S4, ∆(54), Σ(36) .

symmetry breaking patterns G → Gv : [Ivanov, Nishi, 1410.6139]

interplay between G and CP [many classical works].
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Symmetries in 3HDM: flavour physics connection

The original idea from 1970’s:

extent G to fermion sector,
arrange for spontaneous violation G → Gv ,
derive masses/mixing/CPV.

Many combinations of G + irreps + vevs were tested, but

if G is large → severe problems in the quark sector;
A4/S4 illustrations in [Gonzales Felipe et al, 1302.0861, 1304.3468];
if G is small → too many free parameters, no predictive power.

The fundamental obstacle
[Leurer, Nir, Seiberg, 1993; Gonzales Felipe et al, 1401.5807]:

If the (active) Higgs sector is equipped with G , then vevs must break G
completely in order to produce physical mq’s and CKM.

But for large G , this is algebraically impossible.
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Proximity to a symmetric 3HDM

For large G :

imposing an exact G → some observables = 0;

a 3HDM in the vicinity, ε, of an exact G → observables depend as εα.

a 3HDM can be close to several distinct symmetric situations → competing
symmetries.

Challenge

When scanning the 3HDM parameter space,

one must detect (proximity to) a G -symmetric situations.
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Basis-invariant methods

Large freedom of basis changes: φa 7→ Uabφb, U ∈ U(N).

Physics does not change upon basis changes!

A symmetry can be evident in one basis and hidden in another → challenge!

The goal

Detecting structural properties of NHDMs irrespective of the basis choice!

General recipe [Botella, Silva, 1995]:

write down all couplings as tensors under basis changes,

take their product and contract all indices → basis invariants Jk ,

find algebraically independent Jk ,

link them to the phenomenon you study.
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Explicit CP conservation in 2HDM scalar sector

The most general 2HDM potential:

V = Yab(φ†aφb) + Zab,cd(φ†aφb)(φ†cφd) ,

or, in the explicit form,

V = −1

2

[
m2

11(φ†1φ1) + m2
22(φ†2φ2) + m2

12(φ†1φ2) + m2 ∗
12 (φ†2φ1)

]
+

λ1

2
(φ†1φ1)2 +

λ2

2
(φ†2φ2)2 + λ3(φ†1φ1)(φ†2φ2) + λ4(φ†1φ2)(φ†2φ1)

+

[
1

2
λ5(φ†1φ2)2 + λ6(φ†1φ1)(φ†1φ2) + λ7(φ†2φ2)(φ†1φ2) + h.c.

]
It contains 4 + 10 = 14 free parameters.
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General 2HDM scalar sector

Checking explicit CP-conservation [Davidson, Haber, 2005; Gunion, Haber, 2005;
Branco, Rebelo, Silva-Marcos, 2005]:

There exists of a basis with all coefs real → symmetry φa → φ∗a .

Construct invariants with Yab and Zab,cd and establish independent ones;

Basis-invariant criterion: check the following four invariants

Im(Z (1)
ac Z

(1)
eb Zbe,cdYda) = 0 , Im(YabYcdZba,df Z

(1)
fc ) = 0 ,

Im(Zab,cdZ
(1)
bf Z

(1)
dh Zfa,jkZkj,mnZnm,hc) = 0 ,

Im(Zac,bdZce,dgZeh,fqYgaYhbYqf ) = 0 , where Z (1)
ac ≡ Zab,bc .
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Basis invariants

Drawbacks:

non-intuitive, relies on computer algebra; one needs to find the
generating set of the ring of symmetry-related invariants;

NB! [Trautner, 1812.02614] shows how to derive them in 2HDM.

becomes even more complicated beyond 2HDM; conditions for CP
symmetry in 3HDM via basis invariants still not established [Varzielas
et al, 1603.06942];

not all information can be easily retrieved! CP-odd basis invariants in
3HDM cannot tell the usual CP from CP4 (order-4 CP symmetry).

A more efficient solution to the basis-invariant challenge:

basis-invariant statements via basis-covariant objects.
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Bilinears in 3HDM

Geometric constructions in the adjoint space [Nachtmann et al, 2004–2007;
Ivanov, 2006–2007; Nishi, 2006–2008]. V is built of 9 bilinears φ†aφb.

r0 =
1√
3
φ†aφa , ri = φ†a(t i )abφb , i = 1, . . . , 8 ,

where ti = λi/2 are SU(3) generators satisfying

[ti , tj ] = ifijktk , {ti , tj} =
1

3
δij13 + dijktk .

The orbit space:

r0 ≥ 0 , r2
0 − r2

i ≥ 0 ,
√

3dijk ri rj rk + (r2
0 − 3r2

i )r0/2 = 0 .

Basis changes → SO(8) rotations of ri .

SU(3) ⊂ SO(8) ⇒ not all SO(8) rotations are basis changes!
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Adjoint space

The NHDM potential takes the simple form

V = −M0r0 −Mi ri + Λ00r
2
0 + Li r0ri + Λij ri rj ,

with vectors M, L ∈ RN2−1 and an (N2 − 1)× (N2 − 1) matrix Λ.

In 2HDM: 3× 3 matrix Λ can be always diagonalized by basis change.

Λ ij L i Mi

e(1)

e(2)

e(3)

Orientation of M and L with respect to eigenvectors of Λ ⇒ symmetries.

Igor Ivanov (CFTP, IST) Basis-invariant methods for 3HDM HPNP2019, Osaka 13/24



Why? Adjoint space Detecting symmetries Conclusions

Adjoint space

In 3HDM, we lack the full SO(8) rotation group:

directions in R8 are not equivalent!

Λ is not in general diagonalizable by basis change.

We need to make sense of the adjoint space.

The toolbox

Suppose vectors a, b ∈ R8. Define new products:

F
(ab)
i ≡ fijkajbk , D

(ab)
i ≡

√
3dijkajbk , D

(aa)
i ≡

√
3dijkajak .

Applied to the eigenvectors of Λ, these products help detect basis-invariant
structures in Λ ⇒ symmetries in 3HDM.
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Detecting special subspaces

Test-(8). Consider a ∈ R8, |a| = 1. Compute vector D(aa).

If D(aa) = −a, then there is a basis in which a is along x8.

If an eigenvector of Λ passes Test-(8), then in this basis

Λ =

(
7×7

0

0 Λ88

)
.

Test-(38). Consider a, b ∈ R8, |a| = |b| = 1.

If F (ab) = 0, then there is a basis in which a, b ∈ (x3, x8).

If two eigenvectors of Λ pass Test-(38), then in this basis

Λ =

(
6×6

0

0
2×2

)
.
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Detecting further splitting of Λ

Test-(12)(45)(67)

Suppose Λ passes Test-(38). Then, in a certain basis, it has a generic 6× 6 block
within the subspace

V6 = (x1, x2; x4, x5; x6, x7) .

Take 6 eigenvectors from this subspace. If they break into three pairs such that
each pair of eigenvectors a′, b′ satisfies

D(a′b′) = 0 and D(a′a′) = D(b′b′) ∈ (x3, x8) ,

then Λ splits into four 2× 2 blocks within subspaces

(x3, x8) , (x1, x2) , (x4, x5) , (x6, x7) .
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Detecting special subspaces

Such Tests give necessary and sufficient conditions for the
corresponding features to occur.

They can be checked in any basis.

One just needs to relate them to symmetries.
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Symmetries in 3HDM

The NHDM potential

V = Yab(φ†aφb) + Zab,cd(φ†aφb)(φ†cφd)

may be invariant under global symmetries:

family symmetries: φa → Uabφb, with U ∈ U(N),

GCP symmetries: φi
CP−−→ Xijφ

∗
j , with X ∈ U(N).

Each symmetry group G and its breaking by vevs Gv ⊆ G lead to a characteristic
phenomenology (scalars, DM candidates, fermion masses, mixing, sources of
CPV, etc).

In 3HDM, a novel form of CP-symmetry (CP4) [Ivanov, Silva, 1512.09276] which
is physically distinct from the usual CP (CP2) [Haber, Ogreid, Osland, Rebelo,
1808.08629].
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Explicit CP2 conservation

CP2: there exists a basis in which it takes the standard form: φa → φ∗a .

In the adjoint space, the standard CP is the following reflection:

vectors from V+ = (x3, x8, x1, x4, x6) stay unchanged,

vectors from V− = (x2, x5, x7) flip signs.

3HDM potential is explicitly CP2-invariant if there exists a basis in which:

Λ has the block-diagonal form:

Λ =

(
5×5

0

0
3×3

)

with generic blocks within V+ and V−.

vectors M, L ∈ V+,
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Detecting explicit CP2 conservation

Detecting
3×3

in (x2, x5, x7):

There exist three mutually orthogonal eigenvectors a, b, c such that

2F (ab) = c , 2F (bc) = a , 2F (ca) = b .

vectors M, L are orthogonal to these a, b, c .

Derived first in [Nishi, hep-ph/0605153].
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Explicit CP4 conservation

CP4 leads in a certain basis in the bilinear space to

x8 → x8 , (x1, x2, x3)→ −(x1, x2, x3)

x4 → x6 , x6 → −x4 , x5 → −x7 , x7 → x5 .

3HDM potential is explicitly CP4-invariant iff there exists a basis in which

the matrix Λ is

Λ =

 3×3
0 0

0
4×4

0

0 0 Λ88


with a specific pattern in the 4× 4 block,

all possible vectors M, L, (Λn)L, Ki ≡ dijkΛjk , . . . are all parallel to x8

(complete alignment).
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Detecting explicit CP4 conservation

Basis invariant necessary and sufficient conditions for explicit CP4 conservation
[Ivanov, Nishi, Silva, Trautner, 1810.13396]:

Λ passes Test-(8): three exists an eigenvector e(8) such that D(88) = −e(8);

There exist three other eigenvectors a, b, c such that

F (a8) = F (b8) = F (c8) = 0 ,

which guarantees the 3× 3 block within (x1, x2, x3) subspace.

M, L, Ki = dijkΛjk , and K
(2)
i = dijk(Λ2)jk are aligned with e(8).
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Weinberg’s model

Weinberg’s model (Z2 × Z2):

Λ passes Test-(38) and Test-(12)(45)(67);

M, L ∈ (x3, x8).

If, in addition, there are degenerate eigenvalues within V6:

if the degeneracy pattern is 1 + 1 + 2 + 2 → U(1)× Z2;

if the degeneracy pattern is 2 + 2 + 2 → U(1)× U(1).

We found basis-invariant conditions for all symmetry groups in 3HDM.
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Conclusions

Done:

Efficient parameter space scans in multi-Higgs models must be able
to detect symmetries in a basis invariant way.

We found a way how to do it in the scalar sector of 3HDM: via
subspace detection techniques applied to eigenvectors of Λ.

To do:

Implement the algorithms in a working computer code.

Go beyond 3HDM.

Apply the idea to the fermion sector.
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