# Basis-invariant road to 3HDMs with symmetries

Igor Ivanov

CFTP, Instituto Superior Técnico, Universidade de Lisboa

HPNP2019, Osaka, February 19th, 2019

based on:

I. P. Ivanov, C. Nishi, J. P. Silva, A. Trautner, PRD99 (2019) 015039 I. P. Ivanov, C. Nishi, A. Trautner, arXiv:1901.11472

and work in progress









(日) (월) (분) (분)



DQC



- 2 Adjoint space approach to 3HDM
- 3 Detecting symmetries in 3HDM



- ∢ ⊒ ▶

- E

Э

# Is there life beyond the SM Higgs?

The minimal Higgs sector of the SM is overstretched. As a result:

- does not explain fermion masses and mixing, neutrino masses, CP-violation;
- has boring flavor properties: no tree-level FCNCs;
- does not help explain DM or baryon asymmetry.

These issues can be successfully addressed in models with extended scalar sectors.

A conservative but rich class of models: *N*-Higgs-doublet models (NHDMs).

2HDM has been our playground for decades, time to move on!

Sac

# Is there life beyond the SM Higgs?

The minimal Higgs sector of the SM is overstretched. As a result:

- does not explain fermion masses and mixing, neutrino masses, CP-violation;
- has boring flavor properties: no tree-level FCNCs;
- does not help explain DM or baryon asymmetry.

These issues can be successfully addressed in models with extended scalar sectors. A conservative but rich class of models: *N*-Higgs-doublet models (NHDMs). 2HDM has been our playground for decades, time to move on!

Sac

| <b>Why?</b><br>o●ooooooo | Adjoint space | Detecting symmetries | Conclusions |
|--------------------------|---------------|----------------------|-------------|
|                          |               |                      |             |

What's new in 3HDM compared to 2HDM:

- richer pheno (both scalar and fermion sectors);
- combining nice features of 2HDM, e.g. NFC + CPV [Weinberg, 1976; Branco, 1979], scalar DM + CPV [Grzadkowski et al, 2009];
- new options for *CP* violation, e.g. geometrical CPV [Branco, Gerard, Grimus, 1984],
- CP symmetry of order 4 (CP4) [Ivanov, Silva, 2015]:
  - mass degeneracy, *CP* eigenstates beyond *CP*-even/odd [Ivanov, Silva, 2015; Haber et al, 2018];
  - DM stabilized by CP4: [Koepke, 2018; Ivanov, Laletin, 2018];
  - quark/neutrino patterns from CP4: [Ferreira et al, 2017; Ivanov, 2018];
  - solution to strong CP problem: [Cherchiglia, Nishi, 2019].
- symmetries, lots of symmetries in the 3HDM scalar sector!

Adjoint space

Detecting symmetries

Conclusions

## Symmetries in 3HDM

Particular examples of 3HDMs with symmetries begin in 1970's; full classification only recently.

• abelian groups: [Ferreira, Silva, 1012.2874; Ivanov, Keus, Vdovin, 1112.1660]

 $\mathbb{Z}_2, \quad \mathbb{Z}_3, \quad \mathbb{Z}_4, \quad \mathbb{Z}_2 \times \mathbb{Z}_2, \quad \textit{U}(1), \quad \textit{U}(1) \times \mathbb{Z}_2, \quad \textit{U}(1) \times \textit{U}(1) \, .$ 

• discrete non-abelian groups: [Ivanov, Vdovin, 1210.6553]

$$S_3$$
,  $D_4$ ,  $A_4$ ,  $S_4$ ,  $\Delta(54)$ ,  $\Sigma(36)$ .

- symmetry breaking patterns  $G \rightarrow G_{v}$ : [Ivanov, Nishi, 1410.6139]
- interplay between G and CP [many classical works].

= nac

| Why?      |  |
|-----------|--|
| 000000000 |  |

## Symmetries in 3HDM: flavour physics connection

- The original idea from 1970's:
  - extent G to fermion sector,
  - ullet arrange for spontaneous violation  $\,G \to \,G_{\!\nu},\,$
  - derive masses/mixing/CPV.

• Many combinations of G + irreps + vevs were tested, but

- if G is large  $\rightarrow$  severe problems in the quark sector;
  - $A_4/S_4$  illustrations in [Gonzales Felipe et al, 1302.0861, 1304.3468];
- if G is small  $\rightarrow$  too many free parameters, no predictive power.
- The fundamental obstacle [Leurer, Nir, Seiberg, 1993; Gonzales Felipe et al, 1401.5807]: If the (active) Higgs sector is equipped with *G*, then vevs must break completely in order to produce physical m<sub>q</sub>'s and CKM.
   But for large *G*, this is algebraically impossible.

MQ P

| Why?      |  |
|-----------|--|
| 000000000 |  |

## Symmetries in 3HDM: flavour physics connection

- The original idea from 1970's:
  - extent G to fermion sector,
  - arrange for spontaneous violation  $G 
    ightarrow G_{v}$ ,
  - derive masses/mixing/CPV.
- Many combinations of G + irreps + vevs were tested, but
  - if G is large  $\rightarrow$  severe problems in the quark sector;  $A_4/S_4$  illustrations in [Gonzales Felipe et al, 1302.0861, 1304.3468];
  - if G is small  $\rightarrow$  too many free parameters, no predictive power.
- The fundamental obstacle
   [Leurer, Nir, Seiberg, 1993; Gonzales Felipe et al, 1401.5807]:

   If the (active) Higgs sector is equipped with *G*, then vevs must break *G* completely in order to produce physical *m<sub>q</sub>*'s and CKM.

   But for large *G*, this is algebraically impossible.

JAC+

| Why?      |  |
|-----------|--|
| 000000000 |  |

## Symmetries in 3HDM: flavour physics connection

- The original idea from 1970's:
  - extent G to fermion sector,
  - arrange for spontaneous violation  $G 
    ightarrow G_{v}$ ,
  - derive masses/mixing/CPV.
- Many combinations of G + irreps + vevs were tested, but
  - if G is large  $\rightarrow$  severe problems in the quark sector;  $A_4/S_4$  illustrations in [Gonzales Felipe et al, 1302.0861, 1304.3468];
  - $\bullet\,$  if G is small  $\rightarrow$  too many free parameters, no predictive power.
- The fundamental obstacle
   [Leurer, Nir, Seiberg, 1993; Gonzales Felipe et al, 1401.5807]:

   If the (active) Higgs sector is equipped with *G*, then vevs must break *G* completely in order to produce physical *m<sub>q</sub>*'s and CKM.

   But for large *G*, this is algebraically impossible.

JAC+

## Proximity to a symmetric 3HDM

For large G:

- imposing an exact  $G \rightarrow$  some observables = 0;
- a 3HDM in the vicinity,  $\epsilon$ , of an exact  $G \rightarrow$  observables depend as  $\epsilon^{\alpha}$ .
- $\bullet$  a 3HDM can be close to several distinct symmetric situations  $\rightarrow$  competing symmetries.

#### Challenge

When scanning the 3HDM parameter space,

one must detect (proximity to) a G-symmetric situations.

SQC

3

Adjoint space

Detecting symmetries

Conclusions

## Basis-invariant methods

Large freedom of basis changes:  $\phi_a \mapsto U_{ab}\phi_b$ ,  $U \in U(N)$ .

Physics does not change upon basis changes!

A symmetry can be evident in one basis and hidden in another  $\rightarrow$  challenge!

#### The goal

Detecting structural properties of NHDMs irrespective of the basis choice!

### General recipe [Botella, Silva, 1995]:

- write down all couplings as tensors under basis changes,
- take their product and contract all indices  $\rightarrow$  basis invariants  $J_k$ ,
- find algebraically independent  $J_k$ ,
- link them to the phenomenon you study.

SQC

3

Why? ○○○○○○●○○ Adjoint space

Detecting symmetries

Conclusions

## Explicit CP conservation in 2HDM scalar sector

The most general 2HDM potential:

$$V = Y_{ab}(\phi_a^{\dagger}\phi_b) + Z_{ab,cd}(\phi_a^{\dagger}\phi_b)(\phi_c^{\dagger}\phi_d),$$

or, in the explicit form,

$$V = -\frac{1}{2} \left[ m_{11}^2 (\phi_1^{\dagger} \phi_1) + m_{22}^2 (\phi_2^{\dagger} \phi_2) + m_{12}^2 (\phi_1^{\dagger} \phi_2) + m_{12}^2 (\phi_2^{\dagger} \phi_1) \right] \\ + \frac{\lambda_1}{2} (\phi_1^{\dagger} \phi_1)^2 + \frac{\lambda_2}{2} (\phi_2^{\dagger} \phi_2)^2 + \lambda_3 (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2) + \lambda_4 (\phi_1^{\dagger} \phi_2) (\phi_2^{\dagger} \phi_1) \\ + \left[ \frac{1}{2} \lambda_5 (\phi_1^{\dagger} \phi_2)^2 + \lambda_6 (\phi_1^{\dagger} \phi_1) (\phi_1^{\dagger} \phi_2) + \lambda_7 (\phi_2^{\dagger} \phi_2) (\phi_1^{\dagger} \phi_2) + \text{h.c.} \right]$$

It contains 4 + 10 = 14 free parameters.

SQC

э

## General 2HDM scalar\_sector

Checking explicit *CP*-conservation [Davidson, Haber, 2005; Gunion, Haber, 2005; Branco, Rebelo, Silva-Marcos, 2005]:

- There exists of a basis with all coefs real  $\rightarrow$  symmetry  $\phi_a \rightarrow \phi_a^*$ .
- Construct invariants with  $Y_{ab}$  and  $Z_{ab,cd}$  and establish independent ones;
- Basis-invariant criterion: check the following four invariants

$$\begin{split} &\operatorname{Im}(Z_{ac}^{(1)}Z_{eb}^{(1)}Z_{be,cd}Y_{da}) = 0, \qquad \operatorname{Im}(Y_{ab}Y_{cd}Z_{ba,df}Z_{fc}^{(1)}) = 0, \\ &\operatorname{Im}(Z_{ab,cd}Z_{bf}^{(1)}Z_{dh}^{(1)}Z_{fa,jk}Z_{kj,mn}Z_{nm,hc}) = 0, \\ &\operatorname{Im}(Z_{ac,bd}Z_{ce,dg}Z_{eh,fq}Y_{ga}Y_{hb}Y_{qf}) = 0, \quad \text{where} \quad Z_{ac}^{(1)} \equiv Z_{ab,bc}. \end{split}$$

Igor Ivanov (CFTP, IST)

SQC

3

## Basis invariants

Drawbacks:

- non-intuitive, relies on computer algebra; one needs to find the generating set of the ring of symmetry-related invariants;
   NB! [Trautner, 1812.02614] shows how to derive them in 2HDM.
- becomes even more complicated beyond 2HDM; conditions for *CP* symmetry in 3HDM via basis invariants still not established [Varzielas et al, 1603.06942];
- not all information can be easily retrieved! *CP*-odd basis invariants in 3HDM cannot tell the usual *CP* from CP4 (order-4 *CP* symmetry).

A more efficient solution to the basis-invariant challenge: basis-invariant statements via basis-covariant objects.

Sar

Drawbacks:

- non-intuitive, relies on computer algebra; one needs to find the generating set of the ring of symmetry-related invariants;
   NB! [Trautner, 1812.02614] shows how to derive them in 2HDM.
- becomes even more complicated beyond 2HDM; conditions for *CP* symmetry in 3HDM via basis invariants still not established [Varzielas et al, 1603.06942];
- not all information can be easily retrieved! *CP*-odd basis invariants in 3HDM cannot tell the usual *CP* from CP4 (order-4 *CP* symmetry).

A more efficient solution to the basis-invariant challenge: basis-invariant statements via basis-covariant objects.

Drawbacks:

- non-intuitive, relies on computer algebra; one needs to find the generating set of the ring of symmetry-related invariants;
   NB! [Trautner, 1812.02614] shows how to derive them in 2HDM.
- becomes even more complicated beyond 2HDM; conditions for *CP* symmetry in 3HDM via basis invariants still not established [Varzielas et al, 1603.06942];
- not all information can be easily retrieved! *CP*-odd basis invariants in 3HDM cannot tell the usual *CP* from CP4 (order-4 *CP* symmetry).

A more efficient solution to the basis-invariant challenge: basis-invariant statements via basis-covariant objects.

| Why?         | Adjoint space | Detecting symmetries | Conclusions |
|--------------|---------------|----------------------|-------------|
|              | 00000         |                      |             |
| Rilinears in | ЗНОМ          |                      |             |

Geometric constructions in the adjoint space [Nachtmann et al, 2004–2007; Ivanov, 2006–2007; Nishi, 2006–2008]. V is built of 9 bilinears  $\phi_a^{\dagger}\phi_b$ .

$$r_0 = \frac{1}{\sqrt{3}} \phi^{\dagger}_{a} \phi_{a}, \quad r_i = \phi^{\dagger}_{a} (t^i)_{ab} \phi_{b}, \quad i = 1, \dots, 8,$$

where  $t_i = \lambda_i/2$  are SU(3) generators satisfying

$$[t_i,t_j]=if_{ijk}t_k\,,\quad \{t_i,t_j\}=\frac{1}{3}\delta_{ij}\mathbf{1}_3+d_{ijk}t_k\,.$$

The orbit space:

$$r_0 \geq 0$$
,  $r_0^2 - r_i^2 \geq 0$ ,  $\sqrt{3}d_{ijk}r_ir_jr_k + (r_0^2 - 3r_i^2)r_0/2 = 0$ .

Basis changes  $\rightarrow SO(8)$  rotations of  $r_i$ .

 $SU(3) \subset SO(8) \Rightarrow$  not all SO(8) rotations are basis changes!

| <b>Why?</b><br>೦೦೦೦೦೦೦೦೦ | Adjoint space<br>○●○○○○ | <b>Detecting symmetries</b> | Conclusions |
|--------------------------|-------------------------|-----------------------------|-------------|
| Adjoint space            |                         |                             |             |

The NHDM potential takes the simple form

$$V = -M_0 r_0 - M_i r_i + \Lambda_{00} r_0^2 + L_i r_0 r_i + \Lambda_{ij} r_i r_j ,$$

with vectors  $M, L \in \mathbb{R}^{N^2-1}$  and an  $(N^2-1) \times (N^2-1)$  matrix  $\Lambda$ .

In 2HDM:  $3 \times 3$  matrix  $\Lambda$  can be always diagonalized by basis change.



Orientation of *M* and *L* with respect to eigenvectors of  $\Lambda \Rightarrow$  symmetries.

Igor Ivanov (CFTP, IST)

Sac

| <b>Why?</b><br>00000000 | Adjoint space<br>○○●○○○ | Detecting symmetries | Conclusions |
|-------------------------|-------------------------|----------------------|-------------|
| Adjoint space           |                         |                      |             |

In 3HDM, we lack the full SO(8) rotation group:

- directions in  $\mathbb{R}^8$  are not equivalent!
- $\Lambda$  is not in general diagonalizable by basis change.

We need to make sense of the adjoint space.

#### The toolbox

Suppose vectors  $a, b \in \mathbb{R}^8$ . Define new products:

$$F_i^{(ab)} \equiv f_{ijk}a_jb_k \,, \quad D_i^{(ab)} \equiv \sqrt{3}d_{ijk}a_jb_k \,, \quad D_i^{(aa)} \equiv \sqrt{3}d_{ijk}a_ja_k \,.$$

Applied to the eigenvectors of  $\Lambda$ , these products help detect basis-invariant structures in  $\Lambda \Rightarrow$  symmetries in 3HDM.

MQ P

| Why?<br>00000000 | Adjoint space<br>००●००० | Detecting symmetries | Conclusions |
|------------------|-------------------------|----------------------|-------------|
| Adjoint space    |                         |                      |             |

In 3HDM, we lack the full SO(8) rotation group:

- directions in  $\mathbb{R}^8$  are not equivalent!
- $\Lambda$  is not in general diagonalizable by basis change.

We need to make sense of the adjoint space.

#### The toolbox

Suppose vectors  $a, b \in \mathbb{R}^8$ . Define new products:

$$F_i^{(ab)} \equiv f_{ijk}a_jb_k \,, \quad D_i^{(ab)} \equiv \sqrt{3}d_{ijk}a_jb_k \,, \quad D_i^{(aa)} \equiv \sqrt{3}d_{ijk}a_ja_k \,.$$

Applied to the eigenvectors of  $\Lambda$ , these products help detect basis-invariant structures in  $\Lambda \Rightarrow$  symmetries in 3HDM.

JAC+

Why?

Adjoint space

Detecting symmetries

Conclusions

## Detecting special subspaces

- Test-(8). Consider  $a \in \mathbb{R}^8$ , |a| = 1. Compute vector  $D^{(aa)}$ . If  $D^{(aa)} = -a$ , then there is a basis in which *a* is along  $x_8$ .
  - If an eigenvector of  $\Lambda$  passes Test-(8), then in this basis

$$\Lambda = \begin{pmatrix} \Box_{7 \times 7} & 0 \\ 0 & \Lambda_{88} \end{pmatrix}$$

Test-(38). Consider a, b ∈ ℝ<sup>8</sup>, |a| = |b| = 1.
 If F<sup>(ab)</sup> = 0, then there is a basis in which a, b ∈ (x<sub>3</sub>, x<sub>8</sub>).
 If two eigenvectors of Λ pass Test-(38), then in this basis

$$\Lambda = \begin{pmatrix} \fbox{$0$}_{6\times 6} & 0 \\ 0 & \fbox{$0$}_{2\times 2} \end{pmatrix}.$$

Igor Ivanov (CFTP, IST)

Sar

Why?

Adjoint space

Detecting symmetries

Conclusions

## Detecting special subspaces

- Test-(8). Consider a ∈ ℝ<sup>8</sup>, |a| = 1. Compute vector D<sup>(aa)</sup>.
   If D<sup>(aa)</sup> = -a, then there is a basis in which a is along x<sub>8</sub>.
  - If an eigenvector of  $\Lambda$  passes Test-(8), then in this basis

$$\Lambda = \begin{pmatrix} \Box_{7 \times 7} & 0 \\ 0 & \Lambda_{88} \end{pmatrix}$$

Test-(38). Consider a, b ∈ ℝ<sup>8</sup>, |a| = |b| = 1.
 If F<sup>(ab)</sup> = 0, then there is a basis in which a, b ∈ (x<sub>3</sub>, x<sub>8</sub>).
 If two eigenvectors of Λ pass Test-(38), then in this basis

$$\Lambda = \begin{pmatrix} \Box_{6 \times 6} & 0 \\ 0 & \Box_{2 \times 2} \end{pmatrix}.$$

SQC

3

## Test-(12)(45)(67)

Suppose A passes Test-(38). Then, in a certain basis, it has a generic  $6\times 6$  block within the subspace

$$V_6 = (x_1, x_2; x_4, x_5; x_6, x_7).$$

Take 6 eigenvectors from this subspace. If they break into three pairs such that each pair of eigenvectors a', b' satisfies

$$D^{(a'b')} = 0$$
 and  $D^{(a'a')} = D^{(b'b')} \in (x_3, x_8)$ ,

then  $\Lambda$  splits into four  $2\times 2$  blocks within subspaces

$$(x_3, x_8), (x_1, x_2), (x_4, x_5), (x_6, x_7).$$

Why?

Adjoint space ○○○○○● Detecting symmetries

Conclusions

## Detecting special subspaces

- Such Tests give necessary and sufficient conditions for the corresponding features to occur.
- They can be checked in any basis.
- One just needs to relate them to symmetries.

Igor Ivanov (CFTP, IST)

Adjoint space

Detecting symmetries •••••• Conclusions

## Symmetries in 3HDM

The NHDM potential

$$V = Y_{ab}(\phi_a^{\dagger}\phi_b) + Z_{ab,cd}(\phi_a^{\dagger}\phi_b)(\phi_c^{\dagger}\phi_d)$$

may be invariant under global symmetries:

- family symmetries:  $\phi_a \rightarrow U_{ab}\phi_b$ , with  $U \in U(N)$ ,
- GCP symmetries:  $\phi_i \xrightarrow{CP} X_{ij}\phi_j^*$ , with  $X \in U(N)$ .

Each symmetry group G and its breaking by vevs  $G_v \subseteq G$  lead to a characteristic phenomenology (scalars, DM candidates, fermion masses, mixing, sources of CPV, etc).

In 3HDM, a novel form of *CP*-symmetry (CP4) [Ivanov, Silva, 1512.09276] which is physically distinct from the usual *CP* (CP2) [Haber, Ogreid, Osland, Rebelo, 1808.08629].

・ロト ・同ト ・ヨト ・ヨト

Sac

3

| Why?<br>00000000 | Adjoint space | Detecting symmetries<br>○●○○○○ | Conclusions |
|------------------|---------------|--------------------------------|-------------|
| Explicit CP2 of  | conservation  |                                |             |

CP2: there exists a basis in which it takes the standard form:  $\phi_a \rightarrow \phi_a^*$ .

In the adjoint space, the standard CP is the following reflection:

- vectors from  $V_+ = (x_3, x_8, x_1, x_4, x_6)$  stay unchanged,
- vectors from  $V_- = (x_2, x_5, x_7)$  flip signs.

3HDM potential is explicitly CP2-invariant if there exists a basis in which:

• A has the block-diagonal form:

$$\Lambda = \left( \begin{array}{cc} \square_{5 \times 5} & 0 \\ 0 & \square_{3 \times 3} \end{array} \right)$$

with generic blocks within  $V_+$  and  $V_-$ .

• vectors  $M, L \in V_+$ ,

Why?

Adjoint space

Detecting symmetries

Conclusions

## Detecting explicit CP2 conservation

Detecting 
$$a_{3\times 3}$$
 in  $(x_2, x_5, x_7)$ :

• There exist three mutually orthogonal eigenvectors a, b, c such that

$$2F^{(ab)} = c$$
,  $2F^{(bc)} = a$ ,  $2F^{(ca)} = b$ .

• vectors *M*, *L* are orthogonal to these *a*, *b*, *c*.

Derived first in [Nishi, hep-ph/0605153].

| Why?<br>00000000 | Adjoint space | <b>Detecting symmetries</b> | Conclusions |
|------------------|---------------|-----------------------------|-------------|
| Explicit CD4     | conconvotion  |                             |             |

CP4 leads in a certain basis in the bilinear space to

$$egin{aligned} & x_8 o x_8 \,, \quad (x_1, x_2, x_3) o - (x_1, x_2, x_3) \ & x_4 o x_6 \,, \quad x_6 o - x_4 \,, \quad x_5 o - x_7 \,, \quad x_7 o x_5 \,. \end{aligned}$$

3HDM potential is explicitly CP4-invariant iff there exists a basis in which

the matrix Λ is

$$\Lambda = \begin{pmatrix} \Box_{3\times3} & 0 & 0 \\ 0 & \Box_{4\times4} & 0 \\ 0 & 0 & \Lambda_{88} \end{pmatrix}$$

with a specific pattern in the 4  $\times$  4 block,

• all possible vectors M, L,  $(\Lambda^n)L$ ,  $K_i \equiv d_{ijk}\Lambda_{jk}$ ,... are all parallel to  $x_8$  (complete alignment).

JAC+

Detecting symmetries ○○○○●○ Conclusions

# Detecting explicit CP4 conservation

Basis invariant necessary and sufficient conditions for explicit CP4 conservation [lvanov, Nishi, Silva, Trautner, 1810.13396]:

- A passes Test-(8): three exists an eigenvector  $e^{(8)}$  such that  $D^{(88)} = -e^{(8)}$ ;
- There exist three other eigenvectors a, b, c such that

$$F^{(a8)} = F^{(b8)} = F^{(c8)} = 0$$
,

which guarantees the  $3 \times 3$  block within  $(x_1, x_2, x_3)$  subspace.

• *M*, *L*,  $K_i = d_{ijk} \Lambda_{jk}$ , and  $K_i^{(2)} = d_{ijk} (\Lambda^2)_{jk}$  are aligned with  $e^{(8)}$ .

SQC

3

# Weinberg's model

## Weinberg's model $(\mathbb{Z}_2 \times \mathbb{Z}_2)$ :

- A passes Test-(38) and Test-(12)(45)(67);
- $M, L \in (x_3, x_8)$ .
- If, in addition, there are degenerate eigenvalues within  $V_6$ :
  - if the degeneracy pattern is  $1 + 1 + 2 + 2 \rightarrow U(1) \times \mathbb{Z}_2$ ;
  - if the degeneracy pattern is  $2 + 2 + 2 \rightarrow U(1) \times U(1)$ .

We found basis-invariant conditions for all symmetry groups in 3HDM.

Sar

# Weinberg's model

### Weinberg's model $(\mathbb{Z}_2 \times \mathbb{Z}_2)$ :

- Λ passes Test-(38) and Test-(12)(45)(67);
- $M, L \in (x_3, x_8)$ .
- If, in addition, there are degenerate eigenvalues within  $V_6$ :
  - if the degeneracy pattern is  $1 + 1 + 2 + 2 \rightarrow U(1) \times \mathbb{Z}_2$ ;
  - if the degeneracy pattern is  $2 + 2 + 2 \rightarrow U(1) \times U(1)$ .

We found basis-invariant conditions for all symmetry groups in 3HDM.

# Weinberg's model

### Weinberg's model $(\mathbb{Z}_2 \times \mathbb{Z}_2)$ :

- A passes Test-(38) and Test-(12)(45)(67);
- $M, L \in (x_3, x_8)$ .
- If, in addition, there are degenerate eigenvalues within  $V_6$ :
  - if the degeneracy pattern is  $1 + 1 + 2 + 2 \rightarrow U(1) \times \mathbb{Z}_2$ ;
  - if the degeneracy pattern is  $2 + 2 + 2 \rightarrow U(1) \times U(1)$ .

We found basis-invariant conditions for all symmetry groups in 3HDM.

Sac

э

## Conclusions

Done:

- Efficient parameter space scans in multi-Higgs models must be able to detect symmetries in a basis invariant way.
- We found a way how to do it in the scalar sector of 3HDM: via subspace detection techniques applied to eigenvectors of Λ.

To do:

- Implement the algorithms in a working computer code.
- Go beyond 3HDM.
- Apply the idea to the fermion sector.

JAC+