Light charged Higgs boson with dominant decay to quarks and its search at LHC and future colliders

[Phys. Rev. D 98, 115024]

A.G. Akeroyd[†], Stefano. Moretti[†], Muyuan.Song[†]

[†]SHEP, University of Southampton, UK

1. Motivation	5. Large BR($H^{\pm} \rightarrow cb$) from Flipped and Democratic 3HDM
 A neutral Higgs boson (spin=0) has been found at the LHC. Classify elementary particles by their electric charge and spin: 	$\Gamma(H^{\pm} \to \ell^{\pm} \nu) = \frac{G_F m_{H^{\pm}} m_{\ell}^2 Z ^2}{4\pi \epsilon \sqrt{2}}; \Gamma(H^{\pm} \to ud) = \frac{3G_F m_{H^{\pm}} V_{ud}(m_d^2 X ^2 + m_u^2 Y ^2)}{4\pi \epsilon \sqrt{2}}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	• For $m_{H^{\pm}} > m_t$ the channel $H^{\pm} \rightarrow tb$ dominates in all 2HDMs and in 3HDM. • For $m_{H^{\pm}} < m_t$, a distinctive signal of H^{\pm} from a 3HDM would contain:
• Why not a charged, spin 0 particle, H^{\pm} ? Reason for MHDM:	Large BR($H^{\pm} \rightarrow cb$) • Only focus on fermions by considering additional neutral Higgs bosons to be much heavier than H^{\pm} .
 Supersymmetry. Three generations of fermions. More generations (doublets) of scalars? 	• Main background is WW, and $W^{\pm} \rightarrow cb$ is small due to small CKM matrix element ($V_{cb} \approx 0.04$). • Use b-tagging to select signal events and to suppress the background.
• Extra sources of CP-violation. 2. The Two Higgs Doublet Model (2HDM)	Constraints of X , Y :

• Introduce a second I = 1/2, Y = 1 doublet to the SM Lagrangian:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ (v_1 + \phi_1^{0,r} + i\phi_1^{0,i})/\sqrt{2} \end{pmatrix}, \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ (v_2 + \phi_2^{0,r} + i\phi_2^{0,i})/\sqrt{2} \end{pmatrix}.$$

 $\tan \beta = v_2/v_1$, where $v_1^2 + v_2^2 = v^2 = 2m_W^2/q$.

- Four types of 2HDM (without tree-level flavour changing scalar currents) :Type I, II, Lepton-specific, and Flipped.
- The Yukawa couplings in 2HDM depend on $\frac{\tan\beta = v_2/v_1}{\tan\beta}$.

 $\mathcal{L}_{H^{\pm}} = -\left\{ \frac{\sqrt{2}V_{ud}}{v} \overline{u} \left(m_d \mathbf{X} P_R + m_u \mathbf{Y} P_L \right) d H^+ + \frac{\sqrt{2}m_e}{v} \mathbf{Z} \overline{\nu_L} \ell_R H^+ + H.c. \right\}$

• Four types of 2HDM (without tree-level FCNC) $[tan\beta = \frac{v_2}{v_1}]$

	X	Y	Z
Type I	$-\cot\beta$	$\cot\beta$	$-\cot\beta$
Type II	$\tan\beta$	$\cot\beta$	aneta
Lepton-specific	$-\cot\beta$	$\cot\beta$	an eta
Flipped	$\tan\beta$	$\cot\beta$	$-\cot\beta$

3. The Three Higgs Doublet Model (3HDM)

- A multi-Higgs doublet model (MHDM) has n scalar doublets.
- A MHDM has n-1 physical charged scalars H^{\pm} .
- The mass matrix of the charged scalars is diagonalised by the $n \times n$ matrix U:

 $\begin{pmatrix} G^+ \\ H_2^+ \\ H_2^+ \end{pmatrix} = U \begin{pmatrix} \phi_d^+ \\ \phi_u^+ \\ \phi_2^+ \end{pmatrix}.$

• Yukawa couplings are defined in terms of the 3×3 mixing matrix U:

$$X = \frac{U_{d2}^{\dagger}}{U_{d1}^{\dagger}}, \qquad Y = -\frac{U_{u2}^{\dagger}}{U_{u1}^{\dagger}}, \qquad Z = \frac{U_{l2}^{\dagger}}{U_{l2}^{\dagger}},$$

• $b \rightarrow s\gamma$: $-1.1 \leq \text{Re}XY^* \leq 0.7$ for $m_{H^{\pm}} = 100$ GeV. • Electric dipole moment of neutron: $Im XY^* \le 0.1$ for $m_{H^{\pm}} = 100$ GeV

Figure 2:Flipped Model : BR($H^{\pm} \rightarrow cb$) channel with $\theta = -\pi/3, \delta = 0, M_{H^{\pm}} = 100 \ GeV$ in $[tan\beta, tan\gamma]$ plane. Left panel: $BR(H^{\pm} \rightarrow cb)$. Right panel : $Re(XY^{*})$ ($b \rightarrow s\gamma$ constraint).

Figure 3:Democratic Model : BR($H^{\pm} \rightarrow cb$) channel with $tan\beta = 40, tan\gamma = 10, M_{H^{\pm}} = 100 \ GeV$ in $[\delta, \theta]$ plane. Left panel: $BR(H^{\pm} \rightarrow cb)$. Centre panel: $Re(XY^{*})$ ($b \rightarrow s\gamma$ constraint). Right panel: $Im(XY^{*})$ (EDM constraint)

	u	d	ℓ
3HDM(Type I)	2	2	2
3HDM(Type II)	2	1	1
3HDM(Lepton-specific)	2	2	1
3HDM(Flipped)	2	1	2
3HDM(Democratic)	2	1	3

• U can be parametrised by four parameters

i) $\tan\beta = v_u/v_d$ ii) $\tan\gamma = \sqrt{v_d^2 + v_u^2/v_\ell}$ iii) Mixing angle θ iv) CP-phase δ . • The explicit form of U given as:

 $= \begin{pmatrix} s_{\gamma}c_{\beta} & s_{\gamma}s_{\beta} & c_{\gamma} \\ -c_{\theta}s_{\beta}e^{-i\delta} - s_{\theta}c_{\gamma}c_{\beta} & c_{\theta}c_{\beta}e^{-i\delta} - s_{\theta}c_{\gamma}s_{\beta} & s_{\theta}s_{\gamma} \\ s_{\theta}s_{\beta}e^{-i\delta} - c_{\theta}c_{\gamma}c_{\beta} & -s_{\theta}c_{\beta}e^{-i\delta} - c_{\theta}c_{\gamma}s_{\beta} & c_{\theta}s_{\gamma} \end{pmatrix}$

Here s, c denote the sine or cosine of the respective parameter.

4. LHC and LEP searches for H^{\pm}

LHC:

• Top quarks are produced in pairs e.g. $gg \to t\bar{t}$; then $t/\bar{t} \to Wb$ (with $W \to e\nu$ or $\mu\nu$) and $\bar{t}/t \to H^{\pm}b$.

• H^{\pm} decay to fermions with hadronic and leptonic channels captured by the detector.

LEP:

- Production of charged Higgs pair from electron-positron collision by exchange of Z or photon.
- The cross-section only involves one unknown parameter, which is the mass of charged Higgs.

6. $BR(t \rightarrow H^{\pm}b)$ multiplied by $BR(H^{\pm} \rightarrow cb)$ in Flipped 3HDM

-0.6

-1.0

-1.2

Φ -0.8·

$$\Gamma(t \to H^{\pm}b) = \frac{G_F m_t}{8\sqrt{2}\pi} [m_t^2 |Y|^2 + m_b^2 |X|^2] [1 - m_{H^{\pm}}^2 / m_t^2]^2$$

Figure 4: $BR(t \to H^{\pm}b) \times BR(H^{\pm} \to cb)$ in [tan β , tan γ] plane with $\theta = -\pi/3, \delta = 0, M_{H^{\pm}} = 85, 130 \text{ GeV}$. Left panel: $M_{H^{\pm}} = 85 \ GeV$. Right panel: $M_{H^{\pm}} = 130 \ GeV$.

- Current limit $t \to H^{\pm}b$ for charged Higgs mass 130 GeV are excluded with $BR(H^{\pm} \to cb) > 0.01$ at LHC.
- LHC has no sensitivity in the range between 80 GeV $\leq m_{H^{\pm}} \leq$ 90 GeV. Whole plane for 85 GeV can be potential signals.
- Tagging the b quark from $H^{\pm} \rightarrow cb$ would possibly allow sensitivity to BR ($t \rightarrow H^{\pm}b$)<0.5%.
- $t \to H^{\pm}b$ and $H^{\pm} \to cb$ are obtained by constraints |X|, |Y|. Small quantities of Yukawa couplings cause low production rates of Higgs.
- Dedicated search for $t \to H^{\pm}b$ and $H^{\pm} \to cb$ is motivated for region 80 GeV $\leq m_{H^{\pm}} \leq$ 90 GeV.

7. Conclusion

• Two types of 3HDM (Flipped and Democratic) can have large $BR(H^{\pm} \rightarrow cb)$.

Figure 1:Left panel: CMS search for charged Higgs decay to charm and bottom with mass range 90 **Right panel:** LEP combined results for charged Higgs through $\tau \nu_{\tau}$ with mass region $\leq m_{H^{\pm}} \leq 150$ GeV. $80 \le m_{H^{\pm}} \le 90$ GeV.

- First CMS search performance on charm and bottom from charged Higgs without any evidence within mass region from 90 to 150 GeV;
- LEP had an excess of events around 2σ for charged Higgs mass range 80 to 90 GeV.

- First search for t to $H^{\pm}b$ followed by H^{\pm} to cb carried out at LHC recently (August, 2018), with limits for 90 GeV $\leq m_{H^{\pm}} \leq 150$ GeV.
- Currently no sensitivity to 80 GeV $\leq m_{H^{\pm}} \leq$ 90 GeV, but sensitivity is expected in the future.
- Production of charged Higgs at e^+e^- colliders do not depend Yukawa couplings parameters.
- No detection of light charged Higgs due to small magnitude of [|X|, |Y|] at LHC.
- It still can be discovered at future e^+e^- colliders use different production method.

8. References

- Y. Grossman. Phenomenology of models with more than two Higgs doublets. Nucl. Phys. B426 (1994) 355.
- AG Akeyord, and Moretti, S and Hernandez-Sanchez, J. Charged Higgs bosons decaying to charm and bottom quarks in models with two or more Higgs doublets. *Physical Review D*, 85(11):115002, 2012.
- CMS Collaboration. CMS-PAS-HIG-18-014. arXiv:1808.06575
- ALEPH and DELPHI and L3 and OPAL and LEP Collaborations. CERN-PH-EP-2012-369. arXiv:1301.6065

