Custodial Symmetry Violation in the Georgi-Machacek model*

Ben Keeshan ¹ Heather	ogan ¹ Terry Pilkington ¹ , ²
Abstract	Our method
This poster examines the effects custodial symmetry (CS) violation in the GM model.	-Choose a set of parameters at the weak scale (parameterized by m_5) from the
We assume that CS is exact at some scale, Λ and use the 1st order RGEs (leading log	custodial symmetric GM model and solve for spectrum
approx.) to run down to the weak scale and calculate the effect on observables. We	-Choose a scale of custodial symmetry (subject to constraint from perturbative
find that the typical scales of CS can be as high as $\mathcal{O}(10 ext{-}200 ext{ TeV})$ with a maximum o	funitarity of λ_i at said scale) and run up to CS scale using RGEs with $g'=0$
10 ⁶ . Even with large amounts of running, the CS violating effects (on masses,	-Use CS relations to set all 16 general parameters at high scale
couplings and decays) are tiny. Outside of special parts of parameter space (e.g. a	-Run back down to the weak scale using full RGEs
degenerate spectrum) they are generically too small to be detected at the LHC	-Calculate vevs, GF, and m_h ; adjust inputs λ_1 and μ_2^2 iteratively until match
although they may be large enough to detect at a future e^+e^- collider.	measurements in custodial violating theory
Georgi-Machacek Model (GM)	-Compute $ ho$ and use $\pm 2\sigma$ region of $ ho=1.00037\pm0.00023$ to place second constrain
Adds real and complex triplet to SM doublet	on scale
Enforce $SU(2)_L \times SU(2)_R$ symmetry to fix $\rho = 1$ at tree-level:	-Use constraints to place upper bound on scale, Λ
$(\chi^{0*} \xi^{+} \chi^{++})$	-Calculate weak scale custodial violating observables using upper bound
$\Phi = \begin{pmatrix} \varphi^* & \varphi^+ \\ \downarrow + * & \downarrow 0 \end{pmatrix}, \qquad X = \begin{pmatrix} -\chi^{+*} & \xi^0 & \chi^+ \end{pmatrix}$	Results-Upper bound on Λ
$\left(\begin{array}{cc} -\phi & \phi \end{array} \right) $ $\left(\begin{array}{cc} \chi^{++*} & -\xi^{+*} & \chi^0 \end{array} \right)$	Typical scales in the order of 10-100 TeV but can be as high as 10 ⁶ TeV
Most general scalar potential that preserves $SU(2)_L imes SU(2)_R$:	
$V(\Phi, X) = \frac{\mu_2^2}{2} Tr(\Phi^{\dagger} \Phi) + \frac{\mu_3^2}{2} Tr(X^{\dagger} X) + \lambda_1 [Tr(\Phi^{\dagger} \Phi)]^2$	0.9 Benchmark ×
$+\lambda_{2}Tr(\Phi^{\dagger}\Phi)Tr(X^{\dagger}X) + \lambda_{2}Tr(X^{\dagger}XX^{\dagger}X) + \lambda_{4}[Tr(X^{\dagger}X)]^{2}$ Georgi & Machacek 1985	

 $+\lambda_2 \operatorname{Ir}(\Phi'\Phi) \operatorname{Ir}(X'X) + \lambda_3 \operatorname{Ir}(X'XX'X) + \lambda_4 \operatorname{Ir}(X'X)^2$ Chanowitz & Golden 1985 $-\lambda_5 \text{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) \text{Tr}(X^{\dagger} t^a X t^b) - M_1 \text{Tr}(\Phi^{\dagger} \tau^a \Phi \tau^b) (U X U^{\dagger})_{ab}$ $-M_2 \operatorname{Tr}(X^{\dagger} t^a X t^b) (U X U^{\dagger})_{ab}$

GM Physical spectrum

Physical spectrum arranged according to $SU(2)_C$ representation: Bidoublet gives: $2 \otimes 2 \rightarrow 3 \oplus 1$

Bitriplet gives: $3 \otimes 3 \rightarrow 5 \oplus 3 \oplus 1$

Have 3 parameters: $c_H = \frac{v_{\phi}}{v}$, $s_H = \frac{\sqrt{8}v_{\chi}}{v}$ (give fraction of doublet and triplet contribution to vector boson masses) and singlet mixing angle α

Singlets: H^0 and h^0 with mass m_H , $m_h = 125 GeV$

- Triplets: (H_3^+, H_3^0, H_3^-) with mass m_3 + Goldstones
- Pheno similar to type I 2HDM, $cot\theta_H \rightarrow tan\beta$

Fiveplet: $(H_5^{++}, H_5^+, H_5^0, H_5^-, H_5^{--})$ with mass m_5

- Fermionphobic, H_5VV couplings proportional to s_H^2
- Pheno benchmark for 'exotic' scalars generated by exotic isospin rep.

History of custodial violation in GM

Custodial violation in Georgi-Machacek model has had a vibrant history Gunion, Vega & Wudka 1991: Standard T parameter calculation yields infinity as a result of uncontrolled UV divergence from hypercharge violating custodial symmetry. Need full gauge invariant potential for counterterm

Englert, Re & Spannowsky 1302.6505 applied S, T parameter constraints by subtracting a counterterm for T

%) and ILC (0.5%) Chiang, Kuo & Yagyu 1804.02633 used measured T parameter as input to fix custodial violating counterterm when calculating h couplings at 1 loop

Blasi, De Curtis & Yagyu 1704.08512 used RGEs to study custodial violation from running up from a custodial symmetric theory at the weak scale Our approach assume custodial symmetry generated accidentally at some scale Λ in an unspecified UV completion (e.g. composite higgs) and use RGEs to run down to weak scale

Most general gauge potential and custodial symmetry violation

$$\begin{split} \phi, \chi, \xi) &= \tilde{\mu}_2^2 \phi^{\dagger} \phi + \tilde{\mu}_3'^2 \chi^{\dagger} \chi + \frac{\tilde{\mu}_3^2}{2} \xi^{\dagger} \xi + \tilde{\lambda}_1 (\phi^{\dagger} \phi)^2 + \tilde{\lambda}_2 |\tilde{\chi}^{\dagger} \chi|^2 + \\ \tilde{\lambda}_3 (\phi^{\dagger} \tau^a \phi) (\chi^{\dagger} t^a \chi) + \left[\tilde{\lambda}_4 (\tilde{\phi}^{\dagger} \tau^a \phi) (\chi^{\dagger} t^a \xi) + \text{h.c.} \right] + \\ \tilde{\lambda}_5 (\phi^{\dagger} \phi) (\chi^{\dagger} \chi) + \tilde{\lambda}_6 (\phi^{\dagger} \phi) (\xi^{\dagger} \xi) + \tilde{\lambda}_7 (\chi^{\dagger} \chi)^2 + \tilde{\lambda}_8 (\xi^{\dagger} \xi)^2 + \\ \tilde{\lambda}_9 |\chi^{\dagger} \xi|^2 + \tilde{\lambda}_{10} (\chi^{\dagger} \chi) (\xi^{\dagger} \xi) - \frac{1}{2} \left[\tilde{M}_1' \phi^{\dagger} \Delta_2 \tilde{\phi} + \text{h.c.} \right] + \\ \frac{\tilde{M}_1}{\sqrt{2}} \phi^{\dagger} \Delta_0 \phi - 6 \tilde{M}_2 \chi^{\dagger} \overline{\Delta}_0 \chi. \end{split}$$

Left: Contours of $\delta \lambda_{WZ}^{\tilde{h}} = \lambda_{WZ}^{\tilde{h}} - 1$ at maximum Right: λ_{WZ}^{h} at maximum cutoff versus m_5 in a cutoff scale in benchmark general scan c.f. current measurement: $\lambda_{WZ}^{\tilde{h}} = 0.88^{+0.10}_{-0.09}$ and expected precision at HL-LHC (1-2)

Results- Mass splittings within custodial 5-plet

In benchmark plane mass splittings of 5-plet obey hierarchy: $m_{\tilde{H}_{5}^{++}} > m_{\tilde{H}_{5}^{+}} > m_{\tilde{H}_{5}^{0}}$ In general scan some points have $m_{ ilde{H}_{F}^{+}} < m_{ ilde{H}_{F}^{0}}$ but with splittings of no more than 1.5

CS violation induces mixing between CS states. H_5 states mixing with doublet induces

 $\left(egin{array}{c} \xi^+ \ \xi^0 \ -\xi^{+*} \end{array}
ight)$ where, $\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$, $\chi = \begin{pmatrix} \chi^+ \\ \chi^+ \\ \chi^0 \end{pmatrix}$ $\xi =$

 $/_{\gamma}^{++}$

- Reduces to GM potential if impose special conditions which will be violated by hypercharge loops
- Can only be exact at 1 energy scale, away from scale RGE running will violate relations

Relation to GM potential

V(

Now have 16 parameters which reduce to the CS 9 when they obey:

$$\begin{split} \tilde{\mu}_2^2 &= \mu_2^2 & \tilde{\lambda}_2 = 2\lambda_3 & \tilde{\lambda}_6 = 2\lambda_2 & \tilde{\lambda}_{10} = 4\lambda_4 \\ \tilde{\mu}_3'^2 &= \mu_3^2 & \tilde{\lambda}_3 = -2\lambda_5 & \tilde{\lambda}_7 = 2\lambda_3 + 4\lambda_4 & \tilde{M}_1' = M_1 \\ \tilde{\mu}_3^2 &= \mu_3^2 & \tilde{\lambda}_4 = -\sqrt{2}\lambda_5 & \tilde{\lambda}_8 = \lambda_3 + \lambda_4 & \tilde{M}_1 = M_1 \\ \tilde{\lambda}_1 &= 4\lambda_1 & \tilde{\lambda}_5 = 4\lambda_2 & \tilde{\lambda}_9 = 4\lambda_3 & \tilde{M}_2 = M_2 \end{split}$$

Running RGEs with g' = 0 will respect these relations

Running $g' \neq 0$ will violate these relations

Treat violation as perturbation of CS GM spectrum- express new mass eigenstates in terms of GM eigenstates

