

EFFECT OF SCATTERING INTERFERENCE TERMS On the Search for a Charged Higgs Boson

> A. Arhrib, D. Azevedo, R. Benbrik, H. Harouiz, S. Moretti, **R. Patrick**, R. Santos

Motivation

- A typical collider analysis involves modelling signal and background scattering amplitudes separately.
- This fails to take into account interference between signal and background diagrams as interference is assumed to be negligible.
- For particles with high widths relative to mass, i.e. potential heavy BSM scalars, this interference can be significant.
- This poster presents such an example in the hMSSM with the process $pp \to tbH^{\pm}$.
- Both a parton level inclusive cross section calculation and full detector analysis are presented.

Parameter Space

Vetoes and Reconstruction

• HiggsBounds and HiggsSignals employed to generate Fig. 1.

- The following vetoes are applied:
- $-N_{\ell} = 1, N_j \ge 5, N_b \ge 3$

• Longitudinal momentum of missing energy solved using:

$$p_{\nu}^{z} = \frac{1}{2p_{\ell T}^{2}} \left(A_{W} p_{\ell}^{z} \pm E_{\ell} \sqrt{A_{W}^{2} \pm 4p_{\ell T}^{2} E_{\nu T}^{2}} \right)$$

where, $A_W = M_{W^{\pm}} + 2p_{\ell T} \cdot E_{\nu T}$

• Reconstruction performed via simultaneous minimization of:

$$\frac{\chi_{\text{had}}^2}{\left(M_{\ell\nu} - M_W\right)^2} + \frac{\left(M_{jj} - M_W\right)^2}{\Gamma_W^2} + \frac{\left(M_{\ell\nu j} - M_T\right)^2}{\Gamma_T^2} + \frac{\left(M_{jjj} - M_T\right)^2}{\Gamma_T^2} + \frac{\left(M_{jjjj} - M_H^{\pm}\right)^2}{\Gamma_H^2}$$

• and the equivalent term for a leptonically decaying H^{\pm} . Signal 0.25 0.6 Background کو 9.20 GeV 🔲 Total

 M_{A^0} [GeV] M_{A^0} [GeV]

- Fig. 1: Slices of hMSSM parameter space fits in terms of cross section, $Br(H^{\pm} \rightarrow tb)$, masses and widths.
- Non-excluded areas containing high width to mass ratio, cross section and $Br(H^{\pm} \to tb)$ can be seen.

Benchmark and Process

- Model: hMSSM
- Key Parameters:
- $-\tan\beta = 1.01$
- $-M_{H^{\pm}} \approx M_A \approx M_H \approx 635 \text{ GeV}$
- $-\Gamma_{H^{\pm}} \approx \Gamma_A \approx \Gamma_H \approx 27 \text{ GeV}$
- Process: $pp \to tbH^{\pm} \to tb\overline{t}\overline{b}$

Fig. 2: Examples of signal diagrams.

Data Generation and Parton Level Results

Fig. 3: Normalized distributions of the invariant masses of reconstructed particles.

Cut Flow Results

Cut	\mathbf{S}	В	S+B	Ι
No cuts:	0.0324	13.0920	13.1430	0.0186
$N_{\ell} = 1:$	0.0045	1.8634	1.8798	0.0186
$N_J \ge 5$:	0.0037	1.0576	1.0662	0.0049
$N_{BJ} \ge 2$:	0.0022	0.5143	0.5142	-0.0023
E > 20:	0.0021	0.4763	0.4754	-0.0030
$\not\!$	0.0020	0.4637	0.4634	-0.0023
Cut	S	В	S+B	Ι
$N_{BJ} \ge 3$:	0.0009	0.1651	0.1670	0.0011
E > 20:	0.0008	0.1530	0.1539	0.0000
$\not\!$	0.0008	0.1491	0.1502	0.0003

• MadGraph5 - 1,000,000 events at parton level to achieve required systematics. • PYTHIA8 for hadronization/fragmentation - applied to 500,000 events. • Delphes for detector effects.

Model		S	В	S+B	Ι
hMSSM	σ	0.032402	13.092	13.143	0.019
	$\Delta \sigma$	$1.4e{-5}$	0.004	0.004	0.008
$\mathrm{m_{h}^{125}}$	σ	0.088502	13.103	13.20	0.009
	$\Delta \sigma$	$3.3e{-5}$	0.004	0.004	0.008
$\mathrm{m_{h}^{mod+}}$	σ	0.016802	13.177	13.197	0.003
	$\Delta \sigma$	5.8e-6	0.004	0.004	0.008

Tab. 1: Parton level results for three MSSM benchmarks.

• hMSSM provides very high levels of interference relative to signal cross section. • m_{h}^{mod+} and m_{h}^{125} benchmarks with higher interference likely exist.

- Tab. 2: Cut flow results for the hMSSM benchmark.
- Two b-tag region results in interference of same magnitude as signal but negative.
- Three b-tag region has much lower interference, but signal cross section suffers greatly.

Future Work

- Detector level results for $m_{\rm h}^{\rm mod+}$ and $m_{\rm h}^{125}$.
- Is the effect of interference simply an overall scaling factor, or are shape changes significant? This must be quantified.
- How can one incorporate interference effects into an MVA analysis (i.e. BDT, SVM, ANN)?
- How are MVA discriminants effected?