Coupling unification in an extension of the minimal dark matter model

Kana Hayami¹, Gi-Chol Cho¹, Nobuchika Okada² Ochanomizu Univ., Alabama Univ.²

Minimal Dark Matter Models (MDMs)

MDMs introduce a single SU(2)_L multiplet to explain Dark Matter(DM)^[1].

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \begin{cases} c\overline{\chi}(iD - M)\chi & (\chi:\text{fermion}) \\ c(|D_{\mu}\chi|^2 - M^2|\chi|^2) & (\chi:\text{scalar}) \end{cases}$ $= \begin{cases} \frac{1}{2} & (DM \text{ is Majorana fermion or real scalar.}) \\ 1 & (DM \text{ is Dirac fermion or complex scalar.}) \end{cases}$

DM candidates : χ_0 (electrically neutral component of χ)

Quantum number :

relic density Ωh^2 (obs.)

	Matter Parity $(P_M:\phi\to\pm\phi)$						
	$SO(10) o SU(5) \otimes U(1)_{\xi}$						
	$SU(5) \to SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ $U(1)_c \to Z_2$						
• charge: $P_M = (-1)^{\xi}$							
	• quark, lepton : $16 = (10, 1) + (5^*, -3) + (1, 5)$ (P _M =-1) • higgs : $10 = (5^*, -2) + (5, 2)$ (P _M =+1)						

 SU(3)_c singlet 					E E	
 SU(2)∟ n-plet 	Quantum numbers			DM can	DM mass	•
• Y is assigned to satisfy $Q = Y + I_3 = 0$.	$SU(2)_L$	$U(1)_Y$	Spin	decay into	[TeV]	•
	1 3	0	0	HH^*	2.5	•
Questions:	2 3	0	1/2	LH	2.7	•
 DM is Unstable? 	3 5	0	0	(HHH^*H^*)	9.4	For D
 Origin of SU(2) multiplet ? 	4 5	0	1/2	-	10	
<u>SO(10) grand unified theory (GUT) can answer these questions.</u>	5 7	0	0	_	25	•

M candidates, P_M stabilizes DM after SO(10) breaking.

To suppose multiplet ϕ between M_{EW} and M_{GUT}

Y=0SU(2) singlet

SU(3) octet

 ϕ : • SO(10) 45 represent • unstable

Model 2 and 3 satisfy conditions.

DM can decay into LH.

Octet mass $: 3 \times 10^8$ [GeV]

• 1 octet fermion

 ϕ can decay into DM.

 $\rightarrow \phi$ is fermion.

DM can decay into HHH^*H^* .

Octets mass : below 2 TeV • 3 octet scalars ϕ can decay into SM. $\rightarrow \phi$ s are scalars.

Summary

- We found 2 models where gauge interactions are unified and DMs are stable.
- Model II predicts color octet scalar particles (~2 TeV).

Tasks

 To study the effects of colored light particles to verify Model II at LHC. • To consider mechanisms to lower masses of DM and p much below the GUT scale.

reference

[1] M. Cirelli, N. Fornengo and A. Strumia, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090]. [2]M. Frigerio and T. Hambye, Phys. Rev. D 81 (2010) 075002[arXiv:0912.1545 [hep-ph]]. [3]H. Nishino et al. Phys. Rev. Lett. 102, 141801 (2009) [arXiv:0903.0676 [hep-ex]].