VERI LUX TAS MEA

Deep learning in searching for a broad $t\bar{t}$ resonance at the LHC

Ke-Pan Xie [kpxie@snu.ac.kr] (谢柯盼)

Seoul National University

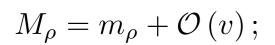
- 1. We use deep neuron network (DNN) to search for a broad $t\bar{t}$ resonance.
- 2. The DNN makes use of the kinematic information of all reconstructed objects in the final state, thus achieves a better bound than the traditional approach.
- 3. We try two approaches to test what the DNN has learned.

1. The broad $t\bar{t}$ resonance

- Exists generally in strongly interacting New Physics models with top-quark portal;
- An example (our **benchmark**):

$$\mathcal{L} = -\frac{1}{4}\rho_{\mu\nu}\rho^{\mu\nu} + \frac{m_{\rho}^2}{2g_{\rho}^2}(g_{\rho}\rho_{\mu} - g_1B_{\mu})^2 + \bar{t}_R\gamma^{\mu}t_R(g_{\rho}\rho_{\mu} - g_1B_{\mu}),$$

- The (gauge singlet) spin-1 resonance ρ :

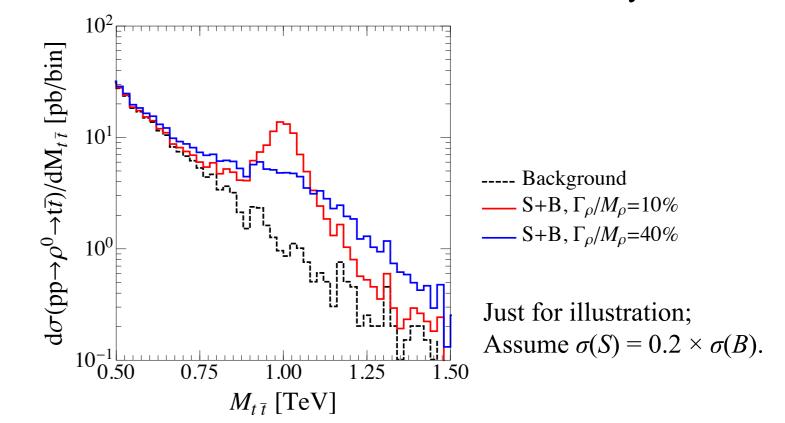


 ${\rm Vertex}(\rho t_R \bar{t}_R) \sim g_\rho; \qquad {\rm Top~portal}$ ${\rm Vertex}(\rho f \bar{f}) \sim Y_f \frac{g'^2}{a_\rho}; \qquad {\rm Through}~\rho\text{-B mixing}$

f denotes the SM fermions and Y_f is the hypercharge.

2. Searching for a $t\bar{t}$ resonance: traditional approach

- To fit the invariant mass distribution of the $t\bar{t}$ system:



- In the traditional approach, only one observable $M_{t\bar{t}}$ is used.
- As a result, the measured bound is **worse** at large width region, because the resonant peak is smeared out.

3. Searching for a $t\bar{t}$ resonance: deep learning approach

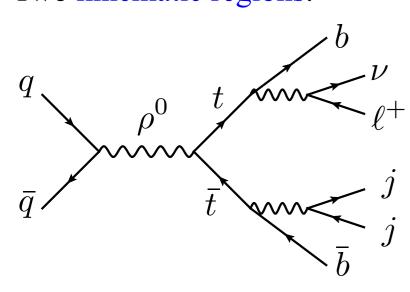
The process under consideration: Signal: $pp \to \rho^0 \to t\bar{t} \to 1\ell^{\pm} + \text{jets}$

Background: SM $pp \to t\bar{t} \to 1\ell^{\pm} + \text{jets}$

- Parameter benchmarks:

$$M_{\rho} = 1, 5 \text{ TeV}; \Gamma_{\rho}/M_{\rho} = 10\%, 20\%, 30\%, 40\%,$$

Two kinematic regions:



The **resolved** region: for 1 TeV resonance; Low-level features for training

1	2	3	4	5		6 7		8	9	10	11	12	13
E^{ℓ}	p_T^ℓ	η^ℓ	ϕ^ℓ	$\not\!\! E_T$	ϕ	$ ot\!\!E_T$	E^{j_1}	$p_T^{j_1}$	η^{j_1}	ϕ^{j_1}	b^{j_1}	E^{j_2}	$p_T^{j_2}$
14	15	16	1	7	18	19	20	21	22	23	24	25	26
η^{j_2}	ϕ^{j_2}	b^{j_2}	E	<i>j</i> 3	$p_T^{j_3}$	η^{j_3}	ϕ^{j_3}	b^{j_3}	E^{j_4}	$p_T^{j_4}$	η^{j_4}	ϕ^{j_4}	b^{j_4}

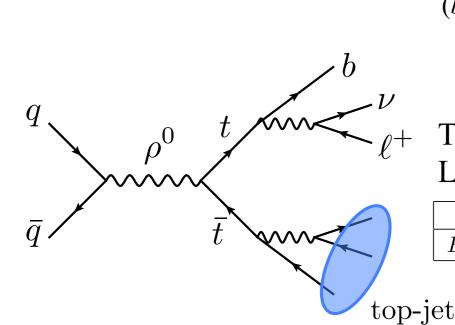
 $Br(\rho \rightarrow t\bar{t}) \sim 100\%$

to be broad!

0.8

0.2

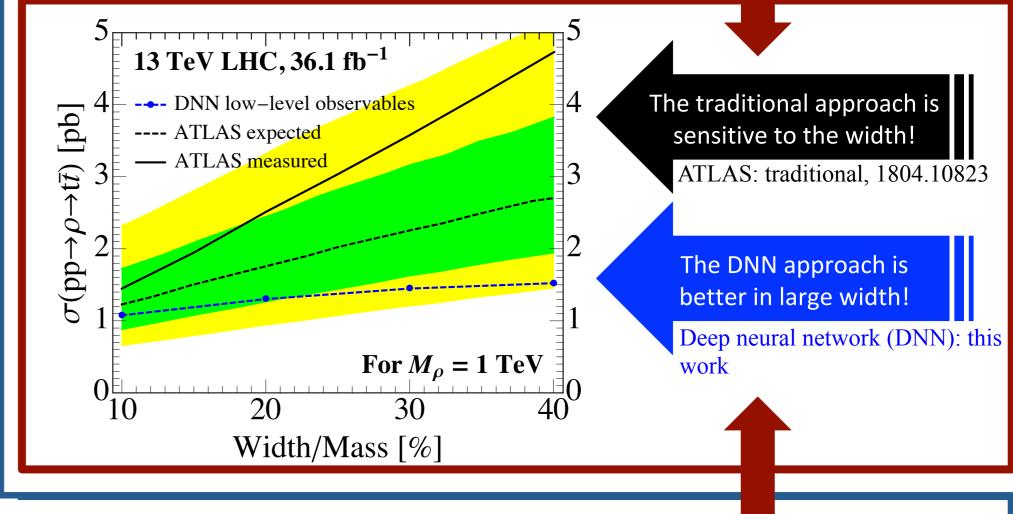
(b': 1 for a b-tagged jet while 0 for an un-tag jet.)

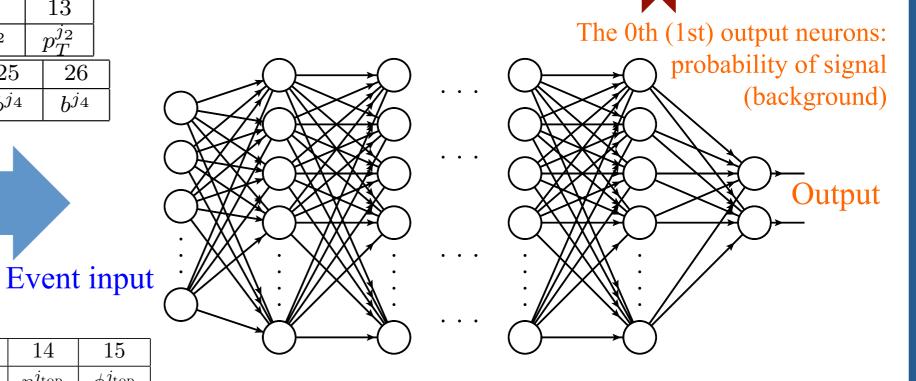


Training on fully-connected neural network

The **boosted** region: for 1 and 5 TeV resonance; Low-level features for training

ow level leatures for training													
1	2	3	4	5	6	7	8	9	10	11	12	13	
E^{ℓ}	p_T^ℓ	η^ℓ	ϕ^{ℓ}	$ ot\!\!\!E_T$	$\phi^{\cancel{E}_T}$	$E^{j_{ m sel}}$	$p_T^{j_{ m sel}}$	$\eta^{j_{ m sel}}$	$\phi^{j_{ m sel}}$	$b^{j_{ m sel}}$	$E^{j_{\mathrm{top}}}$	$p_T^{j_{ m top}}$	γ

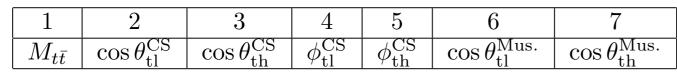




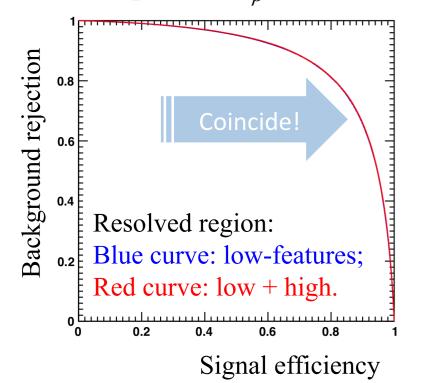
For deep learning: we tried 4 or 5 hidden layers, with 200 or 300 neurons per layer.

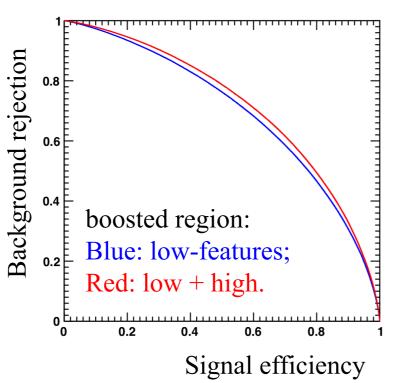
4. Figuring out what the machine has learned

- The **first** approach: use the receiver operating characteristic (ROC) curves to test whether it has learned some specific physical observables.
- We define 7 high-level (i.e. expert-defined, well-motivated) observables to test: invariant mass of top-pair; angles in Collins-Sopper frame (see Phys. Rev. D16, 2219 (1977)); angles in Mustraal frame (see 1605.05450).



- We found that the neural network can learn all high-level observables via the low-level features in the resolved region; while for the boosted region, it can only learn part of the high-level features due to the tight cut.
- An example for $M_o = 1$ TeV, Width/Mass = 40%:





- If the red and blue curves coincide, that means the network has learned all high-level observables from the low-level ones.

- ➤ The **second** approach: disassemble the network!
- We found that the 1st hidden layer typically has a learning speed several times larger than other layers. Motivated by this, we use the weights from the 1st hidden layer to describe the importance of the input observables:

